ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocpr GIF version

Theorem addlocpr 6726
Description: Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 6693 to both 𝐴 and 𝐵, and uses nqtri3or 6586 rather than prloc 6681 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addlocpr ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Distinct variable groups:   𝐴,𝑞,𝑟   𝐵,𝑞,𝑟

Proof of Theorem addlocpr
Dummy variables 𝑑 𝑒 𝑝 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqq 6598 . . . . . 6 ((𝑞Q𝑟Q) → (𝑞 <Q 𝑟 ↔ ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟))
21biimpa 290 . . . . 5 (((𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
323adant1 956 . . . 4 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → ∃𝑝Q (𝑞 +Q 𝑝) = 𝑟)
4 halfnqq 6600 . . . . . 6 (𝑝Q → ∃Q ( +Q ) = 𝑝)
54ad2antrl 473 . . . . 5 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → ∃Q ( +Q ) = 𝑝)
6 prop 6665 . . . . . . . . . 10 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prarloc 6693 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
86, 7sylan 277 . . . . . . . . 9 ((𝐴PQ) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
98adantlr 460 . . . . . . . 8 (((𝐴P𝐵P) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1093ad2antl1 1100 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
1110ad2ant2r 492 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ))
12 prop 6665 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
13 prarloc 6693 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1412, 13sylan 277 . . . . . . . . . . . . 13 ((𝐵PQ) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1514adantll 459 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
16153ad2antl1 1100 . . . . . . . . . . 11 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ Q) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1716ad2ant2r 492 . . . . . . . . . 10 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
1817adantr 270 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → ∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ))
19 simpll1 977 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝐴P𝐵P))
2019ad2antrr 471 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝐴P𝐵P))
2120simpld 110 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐴P)
2220simprd 112 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝐵P)
23 simpll3 979 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → 𝑞 <Q 𝑟)
2423ad2antrr 471 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑞 <Q 𝑟)
25 simplrl 501 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → Q)
2625adantr 270 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → Q)
27 simplrr 502 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q 𝑝) = 𝑟)
28 oveq2 5540 . . . . . . . . . . . . . . . 16 (( +Q ) = 𝑝 → (𝑞 +Q ( +Q )) = (𝑞 +Q 𝑝))
2928eqeq1d 2089 . . . . . . . . . . . . . . 15 (( +Q ) = 𝑝 → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3029ad2antll 474 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → ((𝑞 +Q ( +Q )) = 𝑟 ↔ (𝑞 +Q 𝑝) = 𝑟))
3127, 30mpbird 165 . . . . . . . . . . . . 13 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 +Q ( +Q )) = 𝑟)
3231ad2antrr 471 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 +Q ( +Q )) = 𝑟)
33 simprll 503 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑑 ∈ (1st𝐴))
3433adantr 270 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑑 ∈ (1st𝐴))
35 simprlr 504 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → 𝑢 ∈ (2nd𝐴))
3635adantr 270 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 ∈ (2nd𝐴))
37 simplrr 502 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑢 <Q (𝑑 +Q ))
38 simprll 503 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑒 ∈ (1st𝐵))
39 simprlr 504 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 ∈ (2nd𝐵))
40 simprr 498 . . . . . . . . . . . 12 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → 𝑡 <Q (𝑒 +Q ))
4121, 22, 24, 26, 32, 34, 36, 37, 38, 39, 40addlocprlem 6725 . . . . . . . . . . 11 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ ((𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵)) ∧ 𝑡 <Q (𝑒 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4241expr 367 . . . . . . . . . 10 (((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) ∧ (𝑒 ∈ (1st𝐵) ∧ 𝑡 ∈ (2nd𝐵))) → (𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4342rexlimdvva 2484 . . . . . . . . 9 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (∃𝑒 ∈ (1st𝐵)∃𝑡 ∈ (2nd𝐵)𝑡 <Q (𝑒 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4418, 43mpd 13 . . . . . . . 8 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ ((𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴)) ∧ 𝑢 <Q (𝑑 +Q ))) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
4544expr 367 . . . . . . 7 ((((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) ∧ (𝑑 ∈ (1st𝐴) ∧ 𝑢 ∈ (2nd𝐴))) → (𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4645rexlimdvva 2484 . . . . . 6 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (∃𝑑 ∈ (1st𝐴)∃𝑢 ∈ (2nd𝐴)𝑢 <Q (𝑑 +Q ) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
4711, 46mpd 13 . . . . 5 (((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) ∧ (Q ∧ ( +Q ) = 𝑝)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
485, 47rexlimddv 2481 . . . 4 ((((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) ∧ (𝑝Q ∧ (𝑞 +Q 𝑝) = 𝑟)) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
493, 48rexlimddv 2481 . . 3 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q) ∧ 𝑞 <Q 𝑟) → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))
50493expia 1140 . 2 (((𝐴P𝐵P) ∧ (𝑞Q𝑟Q)) → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
5150ralrimivva 2443 1 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  wral 2348  wrex 2349  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   +Q cplq 6472   <Q cltq 6475  Pcnp 6481   +P cpp 6483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658
This theorem is referenced by:  addclpr  6727
  Copyright terms: Public domain W3C validator