| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlemeqgt | GIF version | ||
| Description: Lemma for addlocpr 6726. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlemeqgt | ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.du | . . 3 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
| 2 | addlocprlem.et | . . 3 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
| 3 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 4 | prop 6665 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
| 6 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
| 7 | elprnqu 6672 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) → 𝑈 ∈ Q) | |
| 8 | 5, 6, 7 | syl2anc 403 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Q) |
| 9 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 10 | elprnql 6671 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
| 11 | 5, 9, 10 | syl2anc 403 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Q) |
| 12 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
| 13 | addclnq 6565 | . . . . 5 ⊢ ((𝐷 ∈ Q ∧ 𝑃 ∈ Q) → (𝐷 +Q 𝑃) ∈ Q) | |
| 14 | 11, 12, 13 | syl2anc 403 | . . . 4 ⊢ (𝜑 → (𝐷 +Q 𝑃) ∈ Q) |
| 15 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 16 | prop 6665 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
| 17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
| 18 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
| 19 | elprnqu 6672 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑇 ∈ Q) | |
| 20 | 17, 18, 19 | syl2anc 403 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Q) |
| 21 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 22 | elprnql 6671 | . . . . . 6 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
| 23 | 17, 21, 22 | syl2anc 403 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Q) |
| 24 | addclnq 6565 | . . . . 5 ⊢ ((𝐸 ∈ Q ∧ 𝑃 ∈ Q) → (𝐸 +Q 𝑃) ∈ Q) | |
| 25 | 23, 12, 24 | syl2anc 403 | . . . 4 ⊢ (𝜑 → (𝐸 +Q 𝑃) ∈ Q) |
| 26 | lt2addnq 6594 | . . . 4 ⊢ (((𝑈 ∈ Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇 ∈ Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) | |
| 27 | 8, 14, 20, 25, 26 | syl22anc 1170 | . . 3 ⊢ (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) |
| 28 | 1, 2, 27 | mp2and 423 | . 2 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))) |
| 29 | addcomnqg 6571 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) | |
| 30 | 29 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) |
| 31 | addassnqg 6572 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
| 32 | 31 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q)) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) |
| 33 | addclnq 6565 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) ∈ Q) | |
| 34 | 33 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) ∈ Q) |
| 35 | 11, 12, 23, 30, 32, 12, 34 | caov4d 5705 | . 2 ⊢ (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| 36 | 28, 35 | breqtrd 3809 | 1 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 〈cop 3401 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 1st c1st 5785 2nd c2nd 5786 Qcnq 6470 +Q cplq 6472 <Q cltq 6475 Pcnp 6481 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-ltnqqs 6543 df-inp 6656 |
| This theorem is referenced by: addlocprlemeq 6723 addlocprlemgt 6724 |
| Copyright terms: Public domain | W3C validator |