ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrp1 GIF version

Theorem ialgrp1 10428
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
algrf.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ialgrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem ialgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . . . 4 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)
21fveq1i 5199 . . 3 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘(𝐾 + 1))
3 simpr 108 . . . . 5 ((𝜑𝐾𝑍) → 𝐾𝑍)
4 algrf.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4syl6eleq 2171 . . . 4 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
6 algrf.s . . . . 5 (𝜑𝑆𝑉)
76adantr 270 . . . 4 ((𝜑𝐾𝑍) → 𝑆𝑉)
8 algrf.4 . . . . . 6 (𝜑𝐴𝑆)
98adantr 270 . . . . 5 ((𝜑𝐾𝑍) → 𝐴𝑆)
104, 9ialgrlemconst 10425 . . . 4 (((𝜑𝐾𝑍) ∧ 𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
11 algrf.5 . . . . . 6 (𝜑𝐹:𝑆𝑆)
1211adantr 270 . . . . 5 ((𝜑𝐾𝑍) → 𝐹:𝑆𝑆)
1312ialgrlem1st 10424 . . . 4 (((𝜑𝐾𝑍) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
145, 7, 10, 13iseqp1 9445 . . 3 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
152, 14syl5eq 2125 . 2 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
165, 7, 10, 13iseqcl 9443 . . . 4 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾) ∈ 𝑆)
174peano2uzs 8672 . . . . . 6 (𝐾𝑍 → (𝐾 + 1) ∈ 𝑍)
18 fvconst2g 5396 . . . . . 6 ((𝐴𝑆 ∧ (𝐾 + 1) ∈ 𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
198, 17, 18syl2an 283 . . . . 5 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) = 𝐴)
2019, 9eqeltrd 2155 . . . 4 ((𝜑𝐾𝑍) → ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆)
21 algrflemg 5871 . . . 4 (((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾) ∈ 𝑆 ∧ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ 𝑆) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)))
2216, 20, 21syl2anc 403 . . 3 ((𝜑𝐾𝑍) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)))
231fveq1i 5199 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)
2423fveq2i 5201 . . 3 (𝐹‘(𝑅𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾))
2522, 24syl6reqr 2132 . 2 ((𝜑𝐾𝑍) → (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}), 𝑆)‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
2615, 25eqtr4d 2116 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  {csn 3398   × cxp 4361  ccom 4367  wf 4918  cfv 4922  (class class class)co 5532  1st c1st 5785  1c1 6982   + caddc 6984  cz 8351  cuz 8619  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  ialginv  10429  ialgcvg  10430  ialgcvga  10433  ialgfx  10434
  Copyright terms: Public domain W3C validator