ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch GIF version

Theorem arch 8285
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛

Proof of Theorem arch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 7095 . . 3 (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
2 dfnn2 8041 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
32rexeqi 2554 . . 3 (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
41, 3sylibr 132 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
5 nnre 8046 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
6 ltxrlt 7178 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛𝐴 < 𝑛))
75, 6sylan2 280 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛𝐴 < 𝑛))
87rexbidva 2365 . 2 (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛))
94, 8mpbird 165 1 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  {cab 2067  wral 2348  wrex 2349   cint 3636   class class class wbr 3785  (class class class)co 5532  cr 6980  1c1 6982   + caddc 6984   < cltrr 6985   < clt 7153  cn 8039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-xp 4369  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-inn 8040
This theorem is referenced by:  nnrecl  8286  bndndx  8287  btwnz  8466  expnbnd  9596  cvg1nlemres  9871  cvg1n  9872  resqrexlemga  9909  alzdvds  10254  dvdsbnd  10348
  Copyright terms: Public domain W3C validator