![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cauappcvgprlemcl | GIF version |
Description: Lemma for cauappcvgpr 6852. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.) |
Ref | Expression |
---|---|
cauappcvgpr.f | ⊢ (𝜑 → 𝐹:Q⟶Q) |
cauappcvgpr.app | ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) |
cauappcvgpr.bnd | ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
cauappcvgpr.lim | ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 |
Ref | Expression |
---|---|
cauappcvgprlemcl | ⊢ (𝜑 → 𝐿 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cauappcvgpr.f | . . . 4 ⊢ (𝜑 → 𝐹:Q⟶Q) | |
2 | cauappcvgpr.app | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q 𝑞)))) | |
3 | cauappcvgpr.bnd | . . . 4 ⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) | |
4 | cauappcvgpr.lim | . . . 4 ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 | |
5 | 1, 2, 3, 4 | cauappcvgprlemm 6835 | . . 3 ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿))) |
6 | ssrab2 3079 | . . . . . 6 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ⊆ Q | |
7 | nqex 6553 | . . . . . . 7 ⊢ Q ∈ V | |
8 | 7 | elpw2 3932 | . . . . . 6 ⊢ ({𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ 𝒫 Q ↔ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ⊆ Q) |
9 | 6, 8 | mpbir 144 | . . . . 5 ⊢ {𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ 𝒫 Q |
10 | ssrab2 3079 | . . . . . 6 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ⊆ Q | |
11 | 7 | elpw2 3932 | . . . . . 6 ⊢ ({𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q ↔ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ⊆ Q) |
12 | 10, 11 | mpbir 144 | . . . . 5 ⊢ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q |
13 | opelxpi 4394 | . . . . 5 ⊢ (({𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)} ∈ 𝒫 Q ∧ {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢} ∈ 𝒫 Q) → 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ∈ (𝒫 Q × 𝒫 Q)) | |
14 | 9, 12, 13 | mp2an 416 | . . . 4 ⊢ 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q 𝑞) <Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q 𝑢}〉 ∈ (𝒫 Q × 𝒫 Q) |
15 | 4, 14 | eqeltri 2151 | . . 3 ⊢ 𝐿 ∈ (𝒫 Q × 𝒫 Q) |
16 | 5, 15 | jctil 305 | . 2 ⊢ (𝜑 → (𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿)))) |
17 | 1, 2, 3, 4 | cauappcvgprlemrnd 6840 | . . 3 ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿))))) |
18 | 1, 2, 3, 4 | cauappcvgprlemdisj 6841 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) |
19 | 1, 2, 3, 4 | cauappcvgprlemloc 6842 | . . 3 ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))) |
20 | 17, 18, 19 | 3jca 1118 | . 2 ⊢ (𝜑 → ((∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿)) ∧ ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿))))) |
21 | elnp1st2nd 6666 | . 2 ⊢ (𝐿 ∈ P ↔ ((𝐿 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐿))) ∧ ((∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑟 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐿))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑟 ∧ 𝑠 ∈ (2nd ‘𝐿)))) ∧ ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿)) ∧ ∀𝑠 ∈ Q ∀𝑟 ∈ Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑟 ∈ (2nd ‘𝐿)))))) | |
22 | 16, 20, 21 | sylanbrc 408 | 1 ⊢ (𝜑 → 𝐿 ∈ P) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 {crab 2352 ⊆ wss 2973 𝒫 cpw 3382 〈cop 3401 class class class wbr 3785 × cxp 4361 ⟶wf 4918 ‘cfv 4922 (class class class)co 5532 1st c1st 5785 2nd c2nd 5786 Qcnq 6470 +Q cplq 6472 <Q cltq 6475 Pcnp 6481 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-inp 6656 |
This theorem is referenced by: cauappcvgprlemladdfu 6844 cauappcvgprlemladdfl 6845 cauappcvgprlemladdru 6846 cauappcvgprlemladdrl 6847 cauappcvgprlemladd 6848 cauappcvgprlem1 6849 cauappcvgprlem2 6850 cauappcvgpr 6852 |
Copyright terms: Public domain | W3C validator |