![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climmpt | GIF version |
Description: Exhibit a function 𝐺 with the same convergence properties as the not-quite-function 𝐹. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
2clim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmpt.2 | ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climmpt | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2clim.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | simpr 108 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
3 | climmpt.2 | . . . 4 ⊢ 𝐺 = (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) | |
4 | uzf 8622 | . . . . . . . 8 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
5 | 4 | ffvelrni 5322 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ 𝒫 ℤ) |
6 | elex 2610 | . . . . . . 7 ⊢ ((ℤ≥‘𝑀) ∈ 𝒫 ℤ → (ℤ≥‘𝑀) ∈ V) | |
7 | 5, 6 | syl 14 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) ∈ V) |
8 | 1, 7 | syl5eqel 2165 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑍 ∈ V) |
9 | mptexg 5407 | . . . . 5 ⊢ (𝑍 ∈ V → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ 𝑍 ↦ (𝐹‘𝑘)) ∈ V) |
11 | 3, 10 | syl5eqel 2165 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝐺 ∈ V) |
12 | 11 | adantr 270 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝐺 ∈ V) |
13 | simpl 107 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → 𝑀 ∈ ℤ) | |
14 | simpr 108 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) | |
15 | fvexg 5214 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) | |
16 | 15 | adantll 459 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ V) |
17 | fveq2 5198 | . . . . 5 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
18 | 17, 3 | fvmptg 5269 | . . . 4 ⊢ ((𝑚 ∈ 𝑍 ∧ (𝐹‘𝑚) ∈ V) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
19 | 14, 16, 18 | syl2anc 403 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
20 | 19 | eqcomd 2086 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) = (𝐺‘𝑚)) |
21 | 1, 2, 12, 13, 20 | climeq 10138 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 Vcvv 2601 𝒫 cpw 3382 class class class wbr 3785 ↦ cmpt 3839 ‘cfv 4922 ℤcz 8351 ℤ≥cuz 8619 ⇝ cli 10117 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 df-clim 10118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |