![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enm | GIF version |
Description: A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
enm | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6251 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | |
2 | f1of 5146 | . . . . . . 7 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴⟶𝐵) | |
3 | ffvelrn 5321 | . . . . . . . . 9 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ 𝐵) | |
4 | elex2 2615 | . . . . . . . . 9 ⊢ ((𝑓‘𝑥) ∈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
6 | 5 | ex 113 | . . . . . . 7 ⊢ (𝑓:𝐴⟶𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
7 | 2, 6 | syl 14 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
8 | 7 | exlimiv 1529 | . . . . 5 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
9 | 1, 8 | sylbi 119 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ 𝐴 → ∃𝑦 𝑦 ∈ 𝐵)) |
10 | 9 | com12 30 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
11 | 10 | exlimiv 1529 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝐴 ≈ 𝐵 → ∃𝑦 𝑦 ∈ 𝐵)) |
12 | 11 | impcom 123 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑦 𝑦 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1421 ∈ wcel 1433 class class class wbr 3785 ⟶wf 4918 –1-1-onto→wf1o 4921 ‘cfv 4922 ≈ cen 6242 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-en 6245 |
This theorem is referenced by: ssfilem 6360 diffitest 6371 |
Copyright terms: Public domain | W3C validator |