ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqsplit GIF version

Theorem iseqsplit 9458
Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.)
Hypotheses
Ref Expression
iseqsplit.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqsplit.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
iseqsplit.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
iseqsplit.s (𝜑𝑆𝑉)
iseqsplit.4 (𝜑𝑀 ∈ (ℤ𝐾))
iseqsplit.5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
Assertion
Ref Expression
iseqsplit (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐾,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem iseqsplit
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iseqsplit.3 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 9051 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2141 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 5198 . . . . . . 7 (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)))
6 fveq2 5198 . . . . . . . 8 (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))
76oveq2d 5548 . . . . . . 7 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))
85, 7eqeq12d 2095 . . . . . 6 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))))
94, 8imbi12d 232 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))))
109imbi2d 228 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))))))
11 eleq1 2141 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
12 fveq2 5198 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘𝑛))
13 fveq2 5198 . . . . . . . 8 (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))
1413oveq2d 5548 . . . . . . 7 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))
1512, 14eqeq12d 2095 . . . . . 6 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))))
1611, 15imbi12d 232 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))))
1716imbi2d 228 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))))))
18 eleq1 2141 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
19 fveq2 5198 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)))
20 fveq2 5198 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))
2120oveq2d 5548 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))
2219, 21eqeq12d 2095 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))
2318, 22imbi12d 232 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))
2423imbi2d 228 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))))
25 eleq1 2141 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
26 fveq2 5198 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = (seq𝐾( + , 𝐹, 𝑆)‘𝑁))
27 fveq2 5198 . . . . . . . 8 (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))
2827oveq2d 5548 . . . . . . 7 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))
2926, 28eqeq12d 2095 . . . . . 6 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)) ↔ (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))))
3025, 29imbi12d 232 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))))
3130imbi2d 228 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑥) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))))))
32 iseqsplit.4 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ𝐾))
33 iseqsplit.s . . . . . . . 8 (𝜑𝑆𝑉)
34 iseqsplit.5 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
35 iseqsplit.1 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3632, 33, 34, 35iseqp1 9445 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (𝐹‘(𝑀 + 1))))
37 eluzel2 8624 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ)
381, 37syl 14 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
39 eluzelz 8628 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
4032, 39syl 14 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
41 peano2uzr 8673 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ𝑀))
4240, 41sylan 277 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ𝑀))
4332adantr 270 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (ℤ𝐾))
44 uztrn 8635 . . . . . . . . . . 11 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑀 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
4542, 43, 44syl2anc 403 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ𝐾))
4645, 34syldan 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝑆)
4738, 33, 46, 35iseq1 9442 . . . . . . . 8 (𝜑 → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
4847oveq2d 5548 . . . . . . 7 (𝜑 → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (𝐹‘(𝑀 + 1))))
4936, 48eqtr4d 2116 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))
5049a1d 22 . . . . 5 (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1)))))
5150a1i 9 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑀 + 1))))))
52 peano2fzr 9056 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
5352adantl 271 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
5453expr 367 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
5554imim1d 74 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))))
56 oveq1 5539 . . . . . . . . . 10 ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))))
57 simprl 497 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ‘(𝑀 + 1)))
58 peano2uz 8671 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ𝐾) → (𝑀 + 1) ∈ (ℤ𝐾))
5932, 58syl 14 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ (ℤ𝐾))
6059adantr 270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ (ℤ𝐾))
61 uztrn 8635 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
6257, 60, 61syl2anc 403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝐾))
6333adantr 270 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑆𝑉)
6434adantlr 460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
6535adantlr 460 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6662, 63, 64, 65iseqp1 9445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6746adantlr 460 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝑆)
6857, 63, 67, 65iseqp1 9445 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6968oveq2d 5548 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
70 simpl 107 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑)
7132, 33, 34, 35iseqcl 9443 . . . . . . . . . . . . . 14 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆)
7271adantr 270 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆)
7357, 63, 67, 65iseqcl 9443 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆)
74 fzss1 9081 . . . . . . . . . . . . . . . 16 ((𝑀 + 1) ∈ (ℤ𝐾) → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
7532, 58, 743syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁))
76 simpr 108 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
77 ssel2 2994 . . . . . . . . . . . . . . 15 ((((𝑀 + 1)...𝑁) ⊆ (𝐾...𝑁) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ (𝐾...𝑁))
7875, 76, 77syl2an 283 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (𝐾...𝑁))
79 elfzuz 9041 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐾...𝑁) → 𝑥 ∈ (ℤ𝐾))
8079, 34sylan2 280 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐾...𝑁)) → (𝐹𝑥) ∈ 𝑆)
8180ralrimiva 2434 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
8281adantr 270 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆)
83 fveq2 5198 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
8483eleq1d 2147 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
8584rspcv 2697 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝐾...𝑁) → (∀𝑥 ∈ (𝐾...𝑁)(𝐹𝑥) ∈ 𝑆 → (𝐹‘(𝑛 + 1)) ∈ 𝑆))
8678, 82, 85sylc 61 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
87 iseqsplit.2 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
8887caovassg 5679 . . . . . . . . . . . . 13 ((𝜑 ∧ ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
8970, 72, 73, 86, 88syl13anc 1171 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
9069, 89eqtr4d 2116 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1))))
9166, 90eqeq12d 2095 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) + (𝐹‘(𝑛 + 1)))))
9256, 91syl5ibr 154 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))
9392expr 367 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → ((seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))
9493a2d 26 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → (((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))
9555, 94syld 44 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1))))))
9695expcom 114 . . . . 5 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))))
9796a2d 26 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑛) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘(𝑛 + 1)))))))
9810, 17, 24, 31, 51, 97uzind4 8676 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))))
991, 98mpcom 36 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁))))
1003, 99mpd 13 1 (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wral 2348  wss 2973  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  iseq1p  9459  ibcval5  9690  clim2iser  10175  clim2iser2  10176
  Copyright terms: Public domain W3C validator