ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fientri3 GIF version

Theorem fientri3 6381
Description: Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
Assertion
Ref Expression
fientri3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))

Proof of Theorem fientri3
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6264 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 118 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 270 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6264 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 118 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad2antlr 472 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 502 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
87adantr 270 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑛)
9 simpr 108 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
10 simplrl 501 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
1110adantr 270 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛 ∈ ω)
12 simplrl 501 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚 ∈ ω)
13 nndomo 6350 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1411, 12, 13syl2anc 403 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝑛𝑚𝑛𝑚))
159, 14mpbird 165 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑛𝑚)
16 endomtr 6293 . . . . . . 7 ((𝐴𝑛𝑛𝑚) → 𝐴𝑚)
178, 15, 16syl2anc 403 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝑚)
18 simplrr 502 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐵𝑚)
1918ensymd 6286 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝑚𝐵)
20 domentr 6294 . . . . . 6 ((𝐴𝑚𝑚𝐵) → 𝐴𝐵)
2117, 19, 20syl2anc 403 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → 𝐴𝐵)
2221orcd 684 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑛𝑚) → (𝐴𝐵𝐵𝐴))
23 simplrr 502 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑚)
24 simpr 108 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
25 simplrl 501 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚 ∈ ω)
2610adantr 270 . . . . . . . . 9 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛 ∈ ω)
27 nndomo 6350 . . . . . . . . 9 ((𝑚 ∈ ω ∧ 𝑛 ∈ ω) → (𝑚𝑛𝑚𝑛))
2825, 26, 27syl2anc 403 . . . . . . . 8 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝑚𝑛𝑚𝑛))
2924, 28mpbird 165 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑚𝑛)
30 endomtr 6293 . . . . . . 7 ((𝐵𝑚𝑚𝑛) → 𝐵𝑛)
3123, 29, 30syl2anc 403 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝑛)
327adantr 270 . . . . . . 7 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐴𝑛)
3332ensymd 6286 . . . . . 6 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝑛𝐴)
34 domentr 6294 . . . . . 6 ((𝐵𝑛𝑛𝐴) → 𝐵𝐴)
3531, 33, 34syl2anc 403 . . . . 5 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → 𝐵𝐴)
3635olcd 685 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) ∧ 𝑚𝑛) → (𝐴𝐵𝐵𝐴))
37 simprl 497 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
38 nntri2or2 6099 . . . . 5 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑚𝑛))
3910, 37, 38syl2anc 403 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑚𝑛))
4022, 36, 39mpjaodan 744 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵𝐵𝐴))
416, 40rexlimddv 2481 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → (𝐴𝐵𝐵𝐴))
423, 41rexlimddv 2481 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  wcel 1433  wrex 2349  wss 2973   class class class wbr 3785  ωcom 4331  cen 6242  cdom 6243  Fincfn 6244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-er 6129  df-en 6245  df-dom 6246  df-fin 6247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator