ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvl GIF version

Theorem genpelvl 6702
Description: Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpelvl ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣   𝑔,𝐹   𝐶,𝑔,
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,)

Proof of Theorem genpelvl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genipv 6699 . . . . . 6 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩)
43fveq2d 5202 . . . . 5 ((𝐴P𝐵P) → (1st ‘(𝐴𝐹𝐵)) = (1st ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩))
5 nqex 6553 . . . . . . 7 Q ∈ V
65rabex 3922 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ∈ V
75rabex 3922 . . . . . 6 {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)} ∈ V
86, 7op1st 5793 . . . . 5 (1st ‘⟨{𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}, {𝑓Q ∣ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝑓 = (𝑔𝐺)}⟩) = {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}
94, 8syl6eq 2129 . . . 4 ((𝐴P𝐵P) → (1st ‘(𝐴𝐹𝐵)) = {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)})
109eleq2d 2148 . . 3 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ 𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)}))
11 elrabi 2746 . . 3 (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} → 𝐶Q)
1210, 11syl6bi 161 . 2 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) → 𝐶Q))
13 prop 6665 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
14 elprnql 6671 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑔 ∈ (1st𝐴)) → 𝑔Q)
1513, 14sylan 277 . . . . . 6 ((𝐴P𝑔 ∈ (1st𝐴)) → 𝑔Q)
16 prop 6665 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
17 elprnql 6671 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∈ (1st𝐵)) → Q)
1816, 17sylan 277 . . . . . 6 ((𝐵P ∈ (1st𝐵)) → Q)
192caovcl 5675 . . . . . 6 ((𝑔QQ) → (𝑔𝐺) ∈ Q)
2015, 18, 19syl2an 283 . . . . 5 (((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) → (𝑔𝐺) ∈ Q)
2120an4s 552 . . . 4 (((𝐴P𝐵P) ∧ (𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵))) → (𝑔𝐺) ∈ Q)
22 eleq1 2141 . . . 4 (𝐶 = (𝑔𝐺) → (𝐶Q ↔ (𝑔𝐺) ∈ Q))
2321, 22syl5ibrcom 155 . . 3 (((𝐴P𝐵P) ∧ (𝑔 ∈ (1st𝐴) ∧ ∈ (1st𝐵))) → (𝐶 = (𝑔𝐺) → 𝐶Q))
2423rexlimdvva 2484 . 2 ((𝐴P𝐵P) → (∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺) → 𝐶Q))
25 eqeq1 2087 . . . . . 6 (𝑓 = 𝐶 → (𝑓 = (𝑔𝐺) ↔ 𝐶 = (𝑔𝐺)))
26252rexbidv 2391 . . . . 5 (𝑓 = 𝐶 → (∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2726elrab3 2750 . . . 4 (𝐶Q → (𝐶 ∈ {𝑓Q ∣ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝑓 = (𝑔𝐺)} ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2810, 27sylan9bb 449 . . 3 (((𝐴P𝐵P) ∧ 𝐶Q) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
2928ex 113 . 2 ((𝐴P𝐵P) → (𝐶Q → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺))))
3012, 24, 29pm5.21ndd 653 1 ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  wrex 2349  {crab 2352  cop 3401  cfv 4922  (class class class)co 5532  cmpt2 5534  1st c1st 5785  2nd c2nd 5786  Qcnq 6470  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  genpprecll  6704  genpcdl  6709  genprndl  6711  genpdisj  6713  genpassl  6714  addnqprlemrl  6747  mulnqprlemrl  6763  distrlem1prl  6772  distrlem5prl  6776  1idprl  6780  ltexprlemfl  6799  recexprlem1ssl  6823  recexprlemss1l  6825  cauappcvgprlemladdfl  6845
  Copyright terms: Public domain W3C validator