ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qapne GIF version

Theorem qapne 8724
Description: Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
Assertion
Ref Expression
qapne ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))

Proof of Theorem qapne
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8707 . . . 4 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
21biimpi 118 . . 3 (𝐵 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
32adantl 271 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
4 simplll 499 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → 𝐴 ∈ ℚ)
5 elq 8707 . . . . . 6 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
64, 5sylib 120 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
7 simplrl 501 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
87zcnd 8470 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
9 simprl 497 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑧 ∈ ℤ)
109ad3antrrr 475 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
1110zcnd 8470 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
12 simprr 498 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝑤 ∈ ℕ)
1312ad3antrrr 475 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
1413nncnd 8053 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
15 nnap0 8068 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℕ → 𝑤 # 0)
1613, 15syl 14 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 # 0)
1711, 14, 16divclapd 7877 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) ∈ ℂ)
18 simplrr 502 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1918nncnd 8053 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
2017, 19mulcld 7139 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 𝑦) ∈ ℂ)
21 nnap0 8068 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 # 0)
2218, 21syl 14 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 # 0)
2319, 22recclapd 7869 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) ∈ ℂ)
2419, 22recap0d 7870 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑦) # 0)
25 apmul1 7876 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ ((𝑧 / 𝑤) · 𝑦) ∈ ℂ ∧ ((1 / 𝑦) ∈ ℂ ∧ (1 / 𝑦) # 0)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
268, 20, 23, 24, 25syl112anc 1173 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦))))
278, 19, 22divrecapd 7880 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
2827eqcomd 2086 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (1 / 𝑦)) = (𝑥 / 𝑦))
2917, 19, 23mulassd 7142 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))))
3019, 22recidapd 7871 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (1 / 𝑦)) = 1)
3130oveq2d 5548 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · (𝑦 · (1 / 𝑦))) = ((𝑧 / 𝑤) · 1))
3217mulid1d 7136 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑧 / 𝑤) · 1) = (𝑧 / 𝑤))
3329, 31, 323eqtrd 2117 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) = (𝑧 / 𝑤))
3428, 33breq12d 3798 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · (1 / 𝑦)) # (((𝑧 / 𝑤) · 𝑦) · (1 / 𝑦)) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3526, 34bitrd 186 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑧 / 𝑤) · 𝑦) ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
3613nnzd 8468 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
377, 36zmulcld 8475 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
3837zcnd 8470 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℂ)
3918nnzd 8468 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
4039, 10zmulcld 8475 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℤ)
4140zcnd 8470 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · 𝑧) ∈ ℂ)
4214, 16recclapd 7869 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) ∈ ℂ)
4314, 16recap0d 7870 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (1 / 𝑤) # 0)
44 apmul1 7876 . . . . . . . . . . . . 13 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ ∧ ((1 / 𝑤) ∈ ℂ ∧ (1 / 𝑤) # 0)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
4538, 41, 42, 43, 44syl112anc 1173 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤))))
468, 14, 42mulassd 7142 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = (𝑥 · (𝑤 · (1 / 𝑤))))
4714, 16recidapd 7871 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑤 · (1 / 𝑤)) = 1)
4847oveq2d 5548 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · (𝑤 · (1 / 𝑤))) = (𝑥 · 1))
498mulid1d 7136 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 · 1) = 𝑥)
5046, 48, 493eqtrd 2117 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) · (1 / 𝑤)) = 𝑥)
5150breq1d 3795 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) · (1 / 𝑤)) # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5245, 51bitrd 186 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤))))
5319, 11, 42mulassd 7142 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5411, 14, 16divrecapd 7880 . . . . . . . . . . . . . 14 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑧 / 𝑤) = (𝑧 · (1 / 𝑤)))
5554oveq2d 5548 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = (𝑦 · (𝑧 · (1 / 𝑤))))
5619, 17mulcomd 7140 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑦 · (𝑧 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5753, 55, 563eqtr2d 2119 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑦 · 𝑧) · (1 / 𝑤)) = ((𝑧 / 𝑤) · 𝑦))
5857breq2d 3797 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝑥 # ((𝑦 · 𝑧) · (1 / 𝑤)) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
5952, 58bitrd 186 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝑥 # ((𝑧 / 𝑤) · 𝑦)))
60 simpr 108 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 = (𝑥 / 𝑦))
61 simpllr 500 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 = (𝑧 / 𝑤))
6260, 61breq12d 3798 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 / 𝑦) # (𝑧 / 𝑤)))
6335, 59, 623bitr4d 218 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ 𝐴 # 𝐵))
64 zapne 8422 . . . . . . . . . 10 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6537, 40, 64syl2anc 403 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6663, 65bitr3d 188 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵 ↔ (𝑥 · 𝑤) ≠ (𝑦 · 𝑧)))
6763notbid 624 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (¬ (𝑥 · 𝑤) # (𝑦 · 𝑧) ↔ ¬ 𝐴 # 𝐵))
68 apti 7722 . . . . . . . . . . 11 (((𝑥 · 𝑤) ∈ ℂ ∧ (𝑦 · 𝑧) ∈ ℂ) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
6938, 41, 68syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ ¬ (𝑥 · 𝑤) # (𝑦 · 𝑧)))
70 qcn 8719 . . . . . . . . . . . . 13 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
7170ad2antrr 471 . . . . . . . . . . . 12 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → 𝐴 ∈ ℂ)
7271ad3antrrr 475 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐴 ∈ ℂ)
7361, 17eqeltrd 2155 . . . . . . . . . . 11 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → 𝐵 ∈ ℂ)
74 apti 7722 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7572, 73, 74syl2anc 403 . . . . . . . . . 10 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
7667, 69, 753bitr4d 218 . . . . . . . . 9 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑦 · 𝑧) ↔ 𝐴 = 𝐵))
7776necon3bid 2286 . . . . . . . 8 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) ≠ (𝑦 · 𝑧) ↔ 𝐴𝐵))
7866, 77bitrd 186 . . . . . . 7 ((((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝐴 = (𝑥 / 𝑦)) → (𝐴 # 𝐵𝐴𝐵))
7978ex 113 . . . . . 6 (((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
8079rexlimdvva 2484 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (𝐴 # 𝐵𝐴𝐵)))
816, 80mpd 13 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 # 𝐵𝐴𝐵))
8281ex 113 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
8382rexlimdvva 2484 . 2 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 # 𝐵𝐴𝐵)))
843, 83mpd 13 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wne 2245  wrex 2349   class class class wbr 3785  (class class class)co 5532  cc 6979  0cc0 6981  1c1 6982   · cmul 6986   # cap 7681   / cdiv 7760  cn 8039  cz 8351  cq 8704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705
This theorem is referenced by:  qltlen  8725  qlttri2  8726  qreccl  8727  qdivcl  8728  irrmul  8732  flqltnz  9289  modqmulnn  9344  qexpclz  9497  sqrt2irraplemnn  10557
  Copyright terms: Public domain W3C validator