ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm GIF version

Theorem gcdaddm 10375
Description: Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 10355 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
213adant1 956 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
32simpld 110 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
4 simp1 938 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
5 1zzd 8378 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℤ)
6 gcdcl 10358 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
763adant1 956 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
87nn0zd 8467 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
9 simp2 939 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
10 simp3 940 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
11 dvds2ln 10228 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
124, 5, 8, 9, 10, 11syl23anc 1176 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁))))
132, 12mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + (1 · 𝑁)))
1410zcnd 8470 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1514mulid2d 7137 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · 𝑁) = 𝑁)
1615oveq2d 5548 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + (1 · 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
1713, 16breqtrd 3809 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁))
183, 17jca 300 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)))
194, 9zmulcld 8475 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2019, 10zaddcld 8473 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)
21 dvdslegcd 10356 . . . . . . . 8 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
2221ex 113 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
238, 9, 20, 22syl3anc 1169 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))))
2418, 23mpid 41 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
25 gcddvds 10355 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
269, 20, 25syl2anc 403 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)))
2726simpld 110 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀)
284znegcld 8471 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝐾 ∈ ℤ)
299, 20gcdcld 10360 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℕ0)
3029nn0zd 8467 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ)
31 dvds2ln 10228 . . . . . . . . . 10 (((-𝐾 ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐾 · 𝑀) + 𝑁) ∈ ℤ)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3228, 5, 30, 9, 20, 31syl23anc 1176 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((𝐾 · 𝑀) + 𝑁)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁)))))
3326, 32mpd 13 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))))
344zcnd 8470 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℂ)
359zcnd 8470 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3634, 35mulneg1d 7515 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝐾 · 𝑀) = -(𝐾 · 𝑀))
3720zcnd 8470 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) ∈ ℂ)
3837mulid2d 7137 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 · ((𝐾 · 𝑀) + 𝑁)) = ((𝐾 · 𝑀) + 𝑁))
3936, 38oveq12d 5550 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4034, 35mulcld 7139 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℂ)
4140negcld 7406 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝐾 · 𝑀) ∈ ℂ)
4240, 41addcomd 7259 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = (-(𝐾 · 𝑀) + (𝐾 · 𝑀)))
4340negidd 7409 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + -(𝐾 · 𝑀)) = 0)
4442, 43eqtr3d 2115 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + (𝐾 · 𝑀)) = 0)
4544oveq1d 5547 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (0 + 𝑁))
4641, 40, 14addassd 7141 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-(𝐾 · 𝑀) + (𝐾 · 𝑀)) + 𝑁) = (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)))
4714addid2d 7258 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 + 𝑁) = 𝑁)
4845, 46, 473eqtr3d 2121 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝐾 · 𝑀) + ((𝐾 · 𝑀) + 𝑁)) = 𝑁)
4939, 48eqtrd 2113 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((-𝐾 · 𝑀) + (1 · ((𝐾 · 𝑀) + 𝑁))) = 𝑁)
5033, 49breqtrd 3809 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁)
5127, 50jca 300 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁))
52 dvdslegcd 10356 . . . . . . . 8 ((((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5352ex 113 . . . . . . 7 (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5430, 9, 10, 53syl3anc 1169 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑀 ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∥ 𝑁) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
5551, 54mpid 41 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁)))
5624, 55anim12d 328 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
577nn0red 8342 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
5829nn0red 8342 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∈ ℝ)
5957, 58letri3d 7226 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ∧ (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) ≤ (𝑀 gcd 𝑁))))
6056, 59sylibrd 167 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
61 0zd 8363 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
62 zdceq 8423 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
639, 61, 62syl2anc 403 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
64 zdceq 8423 . . . . . . 7 ((((𝐾 · 𝑀) + 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
6520, 61, 64syl2anc 403 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ((𝐾 · 𝑀) + 𝑁) = 0)
66 dcan 875 . . . . . 6 (DECID 𝑀 = 0 → (DECID ((𝐾 · 𝑀) + 𝑁) = 0 → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0)))
6763, 65, 66sylc 61 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
68 zdceq 8423 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
6910, 61, 68syl2anc 403 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
70 dcan 875 . . . . . 6 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∧ 𝑁 = 0)))
7163, 69, 70sylc 61 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
72 orandc 880 . . . . 5 ((DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ DECID (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
7367, 71, 72syl2anc 403 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) ↔ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
74 simpr 108 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
7574oveq2d 5548 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = (𝐾 · 0))
7634mul01d 7497 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 0) = 0)
7776adantr 270 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 0) = 0)
7875, 77eqtrd 2113 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐾 · 𝑀) = 0)
7978oveq1d 5547 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = (0 + 𝑁))
8047adantr 270 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
8179, 80eqtrd 2113 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐾 · 𝑀) + 𝑁) = 𝑁)
8281eqeq1d 2089 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (((𝐾 · 𝑀) + 𝑁) = 0 ↔ 𝑁 = 0))
8382pm5.32da 439 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0)))
84 oveq12 5541 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
8584adantl 271 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
86 oveq12 5541 . . . . . . . . . 10 ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8783, 86syl6bir 162 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0)))
8887imp 122 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (0 gcd 0))
8985, 88eqtr4d 2116 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
9089ex 113 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9183, 90sylbid 148 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9291, 90jaod 669 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∨ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
9373, 92sylbird 168 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁))))
94 dcn 779 . . . . . 6 (DECID (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
9567, 94syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0))
96 dcn 779 . . . . . 6 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
9771, 96syl 14 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0))
98 dcan 875 . . . . 5 (DECID ¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) → (DECID ¬ (𝑀 = 0 ∧ 𝑁 = 0) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
9995, 97, 98sylc 61 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
100 exmiddc 777 . . . 4 (DECID (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10199, 100syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) ∨ ¬ (¬ (𝑀 = 0 ∧ ((𝐾 · 𝑀) + 𝑁) = 0) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0))))
10260, 93, 101mpjaod 670 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)))
10340, 14addcomd 7259 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) + 𝑁) = (𝑁 + (𝐾 · 𝑀)))
104103oveq2d 5548 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
105102, 104eqtrd 2113 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986  cle 7154  -cneg 7280  0cn0 8288  cz 8351  cdvds 10195   gcd cgcd 10338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339
This theorem is referenced by:  gcdadd  10376  gcdid  10377  modgcd  10382  gcdmultiple  10409
  Copyright terms: Public domain W3C validator