ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3 GIF version

Theorem prarloclem3 6687
Description: Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6693. (Contributed by Jim Kingdon, 27-Oct-2019.)
Assertion
Ref Expression
prarloclem3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Distinct variable groups:   𝐴,𝑗,𝑦   𝑗,𝐿,𝑦   𝑃,𝑗,𝑦   𝑈,𝑗,𝑦   𝑦,𝑋
Allowed substitution hint:   𝑋(𝑗)

Proof of Theorem prarloclem3
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 497 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑋 ∈ ω)
2 simpll 495 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → ⟨𝐿, 𝑈⟩ ∈ P)
3 simplr 496 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝐴𝐿)
4 simprr 498 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → 𝑃Q)
5 oveq2 5540 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
65opeq1d 3576 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩)
76eceq1d 6165 . . . . . . . . . . . 12 (𝑥 = 𝑋 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
87oveq1d 5547 . . . . . . . . . . 11 (𝑥 = 𝑋 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
98oveq2d 5548 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
109eleq1d 2147 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
1110anbi2d 451 . . . . . . . 8 (𝑥 = 𝑋 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1211rexbidv 2369 . . . . . . 7 (𝑥 = 𝑋 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
1312imbi1d 229 . . . . . 6 (𝑥 = 𝑋 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
1413imbi2d 228 . . . . 5 (𝑥 = 𝑋 → (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
15 oveq2 5540 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 ∅))
1615opeq1d 3576 . . . . . . . . . . . . 13 (𝑥 = ∅ → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩)
1716eceq1d 6165 . . . . . . . . . . . 12 (𝑥 = ∅ → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q )
1817oveq1d 5547 . . . . . . . . . . 11 (𝑥 = ∅ → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃))
1918oveq2d 5548 . . . . . . . . . 10 (𝑥 = ∅ → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)))
2019eleq1d 2147 . . . . . . . . 9 (𝑥 = ∅ → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2120anbi2d 451 . . . . . . . 8 (𝑥 = ∅ → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2221rexbidv 2369 . . . . . . 7 (𝑥 = ∅ → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
2322imbi1d 229 . . . . . 6 (𝑥 = ∅ → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
24 oveq2 5540 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑧))
2524opeq1d 3576 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩)
2625eceq1d 6165 . . . . . . . . . . . 12 (𝑥 = 𝑧 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q )
2726oveq1d 5547 . . . . . . . . . . 11 (𝑥 = 𝑧 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃))
2827oveq2d 5548 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)))
2928eleq1d 2147 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3029anbi2d 451 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3130rexbidv 2369 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
3231imbi1d 229 . . . . . 6 (𝑥 = 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
33 oveq2 5540 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑧 → ((𝑦 +𝑜 2𝑜) +𝑜 𝑥) = ((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧))
3433opeq1d 3576 . . . . . . . . . . . . 13 (𝑥 = suc 𝑧 → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩ = ⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩)
3534eceq1d 6165 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q = [⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q )
3635oveq1d 5547 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃))
3736oveq2d 5548 . . . . . . . . . 10 (𝑥 = suc 𝑧 → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)))
3837eleq1d 2147 . . . . . . . . 9 (𝑥 = suc 𝑧 → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
3938anbi2d 451 . . . . . . . 8 (𝑥 = suc 𝑧 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4039rexbidv 2369 . . . . . . 7 (𝑥 = suc 𝑧 → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
4140imbi1d 229 . . . . . 6 (𝑥 = suc 𝑧 → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) ↔ (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
42 2onn 6117 . . . . . . . . . . . . . . . . 17 2𝑜 ∈ ω
43 nnacl 6082 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → (𝑦 +𝑜 2𝑜) ∈ ω)
44 nna0 6076 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑜 2𝑜) ∈ ω → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4543, 44syl 14 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4642, 45mpan2 415 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω → ((𝑦 +𝑜 2𝑜) +𝑜 ∅) = (𝑦 +𝑜 2𝑜))
4746opeq1d 3576 . . . . . . . . . . . . . . 15 (𝑦 ∈ ω → ⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩ = ⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩)
4847eceq1d 6165 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → [⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q = [⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q )
4948oveq1d 5547 . . . . . . . . . . . . 13 (𝑦 ∈ ω → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
5049oveq2d 5548 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)))
5150eleq1d 2147 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
5251anbi2d 451 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
5352rexbiia 2381 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
54 opeq1 3570 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨𝑦, 1𝑜⟩ = ⟨𝑗, 1𝑜⟩)
5554eceq1d 6165 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨𝑦, 1𝑜⟩] ~Q0 = [⟨𝑗, 1𝑜⟩] ~Q0 )
5655oveq1d 5547 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃))
5756oveq2d 5548 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)))
5857eleq1d 2147 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
59 oveq1 5539 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑗 → (𝑦 +𝑜 2𝑜) = (𝑗 +𝑜 2𝑜))
6059opeq1d 3576 . . . . . . . . . . . . . . 15 (𝑦 = 𝑗 → ⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩ = ⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩)
6160eceq1d 6165 . . . . . . . . . . . . . 14 (𝑦 = 𝑗 → [⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q = [⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q )
6261oveq1d 5547 . . . . . . . . . . . . 13 (𝑦 = 𝑗 → ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃) = ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
6362oveq2d 5548 . . . . . . . . . . . 12 (𝑦 = 𝑗 → (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)))
6463eleq1d 2147 . . . . . . . . . . 11 (𝑦 = 𝑗 → ((𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6558, 64anbi12d 456 . . . . . . . . . 10 (𝑦 = 𝑗 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
6665cbvrexv 2578 . . . . . . . . 9 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑦 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6753, 66bitri 182 . . . . . . . 8 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6867biimpi 118 . . . . . . 7 (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
6968a1i 9 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 ∅), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
70 prarloclem3step 6686 . . . . . . . . 9 (((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7170ex 113 . . . . . . . 8 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271imim1d 74 . . . . . . 7 ((𝑧 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7372ex 113 . . . . . 6 (𝑧 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → ((∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑧), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))))
7423, 32, 41, 69, 73finds2 4342 . . . . 5 (𝑥 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7514, 74vtoclga 2664 . . . 4 (𝑋 ∈ ω → ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
7675imp 122 . . 3 ((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
771, 2, 3, 4, 76syl13anc 1171 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
78773impia 1135 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wcel 1433  wrex 2349  c0 3251  cop 3401  suc csuc 4120  ωcom 4331  (class class class)co 5532  1𝑜c1o 6017  2𝑜c2o 6018   +𝑜 coa 6021  [cec 6127   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472   ·Q cmq 6473   ~Q0 ceq0 6476   +Q0 cplq0 6479   ·Q0 cmq0 6480  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-plq0 6617  df-mq0 6618  df-inp 6656
This theorem is referenced by:  prarloclem4  6688
  Copyright terms: Public domain W3C validator