![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltaddnq | GIF version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2nq 6596 | . . . . . . 7 ⊢ 1Q <Q (1Q +Q 1Q) | |
2 | 1nq 6556 | . . . . . . . 8 ⊢ 1Q ∈ Q | |
3 | addclnq 6565 | . . . . . . . . 9 ⊢ ((1Q ∈ Q ∧ 1Q ∈ Q) → (1Q +Q 1Q) ∈ Q) | |
4 | 2, 2, 3 | mp2an 416 | . . . . . . . 8 ⊢ (1Q +Q 1Q) ∈ Q |
5 | ltmnqg 6591 | . . . . . . . 8 ⊢ ((1Q ∈ Q ∧ (1Q +Q 1Q) ∈ Q ∧ 𝐵 ∈ Q) → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) | |
6 | 2, 4, 5 | mp3an12 1258 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q)))) |
7 | 1, 6 | mpbii 146 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) <Q (𝐵 ·Q (1Q +Q 1Q))) |
8 | mulidnq 6579 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q 1Q) = 𝐵) | |
9 | distrnqg 6577 | . . . . . . . 8 ⊢ ((𝐵 ∈ Q ∧ 1Q ∈ Q ∧ 1Q ∈ Q) → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) | |
10 | 2, 2, 9 | mp3an23 1260 | . . . . . . 7 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q))) |
11 | 8, 8 | oveq12d 5550 | . . . . . . 7 ⊢ (𝐵 ∈ Q → ((𝐵 ·Q 1Q) +Q (𝐵 ·Q 1Q)) = (𝐵 +Q 𝐵)) |
12 | 10, 11 | eqtrd 2113 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 ·Q (1Q +Q 1Q)) = (𝐵 +Q 𝐵)) |
13 | 7, 8, 12 | 3brtr3d 3814 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 <Q (𝐵 +Q 𝐵)) |
14 | 13 | adantl 271 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 <Q (𝐵 +Q 𝐵)) |
15 | simpr 108 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐵 ∈ Q) | |
16 | addclnq 6565 | . . . . . . 7 ⊢ ((𝐵 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) | |
17 | 16 | anidms 389 | . . . . . 6 ⊢ (𝐵 ∈ Q → (𝐵 +Q 𝐵) ∈ Q) |
18 | 17 | adantl 271 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐵) ∈ Q) |
19 | simpl 107 | . . . . 5 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 ∈ Q) | |
20 | ltanqg 6590 | . . . . 5 ⊢ ((𝐵 ∈ Q ∧ (𝐵 +Q 𝐵) ∈ Q ∧ 𝐴 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) | |
21 | 15, 18, 19, 20 | syl3anc 1169 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 <Q (𝐵 +Q 𝐵) ↔ (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵)))) |
22 | 14, 21 | mpbid 145 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) <Q (𝐴 +Q (𝐵 +Q 𝐵))) |
23 | addcomnqg 6571 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) | |
24 | addcomnqg 6571 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) | |
25 | 24 | adantl 271 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q)) → (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)) |
26 | addassnqg 6572 | . . . . 5 ⊢ ((𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) | |
27 | 26 | adantl 271 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝑟 ∈ Q ∧ 𝑠 ∈ Q ∧ 𝑡 ∈ Q)) → ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))) |
28 | 19, 15, 15, 25, 27 | caov12d 5702 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q (𝐵 +Q 𝐵)) = (𝐵 +Q (𝐴 +Q 𝐵))) |
29 | 22, 23, 28 | 3brtr3d 3814 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵))) |
30 | addclnq 6565 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) | |
31 | ltanqg 6590 | . . 3 ⊢ ((𝐴 ∈ Q ∧ (𝐴 +Q 𝐵) ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) | |
32 | 19, 30, 15, 31 | syl3anc 1169 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q (𝐴 +Q 𝐵) ↔ (𝐵 +Q 𝐴) <Q (𝐵 +Q (𝐴 +Q 𝐵)))) |
33 | 29, 32 | mpbird 165 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 (class class class)co 5532 Qcnq 6470 1Qc1q 6471 +Q cplq 6472 ·Q cmq 6473 <Q cltq 6475 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-ltnqqs 6543 |
This theorem is referenced by: ltexnqq 6598 nsmallnqq 6602 subhalfnqq 6604 ltbtwnnqq 6605 prarloclemarch2 6609 ltexprlemm 6790 ltexprlemopl 6791 addcanprleml 6804 addcanprlemu 6805 recexprlemm 6814 cauappcvgprlemm 6835 cauappcvgprlemopl 6836 cauappcvgprlem2 6850 caucvgprlemnkj 6856 caucvgprlemnbj 6857 caucvgprlemm 6858 caucvgprlemopl 6859 caucvgprprlemnjltk 6881 caucvgprprlemopl 6887 |
Copyright terms: Public domain | W3C validator |