ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfzo12 GIF version

Theorem ssfzo12 9233
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfzo12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12
StepHypRef Expression
1 fzolb2 9163 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 ∈ (𝐾..^𝐿) ↔ 𝐾 < 𝐿))
21biimp3ar 1277 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐾 ∈ (𝐾..^𝐿))
3 fzoend 9231 . . 3 (𝐾 ∈ (𝐾..^𝐿) → (𝐿 − 1) ∈ (𝐾..^𝐿))
4 ssel2 2994 . . . . . . 7 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → 𝐾 ∈ (𝑀..^𝑁))
5 ssel2 2994 . . . . . . . . . 10 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → (𝐿 − 1) ∈ (𝑀..^𝑁))
6 elfzolt2 9165 . . . . . . . . . 10 ((𝐿 − 1) ∈ (𝑀..^𝑁) → (𝐿 − 1) < 𝑁)
7 simp2 939 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐿 ∈ ℤ)
8 elfzoel2 9156 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
9 zlem1lt 8407 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
107, 8, 9syl2anr 284 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
11 elfzole1 9164 . . . . . . . . . . . . . . 15 (𝐾 ∈ (𝑀..^𝑁) → 𝑀𝐾)
12 pm3.2 137 . . . . . . . . . . . . . . 15 (𝑀𝐾 → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1311, 12syl 14 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1413adantr 270 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1510, 14sylbird 168 . . . . . . . . . . . 12 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁)))
1615ex 113 . . . . . . . . . . 11 (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁))))
1716com13 79 . . . . . . . . . 10 ((𝐿 − 1) < 𝑁 → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
185, 6, 173syl 17 . . . . . . . . 9 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
1918ex 113 . . . . . . . 8 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
2019com24 86 . . . . . . 7 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
214, 20syl5com 29 . . . . . 6 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2221ex 113 . . . . 5 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁))))))
2322pm2.43a 50 . . . 4 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2423com14 87 . . 3 ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
253, 24mpcom 36 . 2 (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
262, 25mpcom 36 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433  wss 2973   class class class wbr 3785  (class class class)co 5532  1c1 6982   < clt 7153  cle 7154  cmin 7279  cz 8351  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by:  ssfzo12bi  9234
  Copyright terms: Public domain W3C validator