ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfzo12bi GIF version

Theorem ssfzo12bi 9234
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018.)
Assertion
Ref Expression
ssfzo12bi (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12bi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-3an 921 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) ↔ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿))
21biimpri 131 . . . 4 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
323adant2 957 . . 3 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿))
4 ssfzo12 9233 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
53, 4syl 14 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
6 elfzo2 9160 . . . . . 6 (𝑥 ∈ (𝐾..^𝐿) ↔ (𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿))
7 eluz2 8625 . . . . . . . . 9 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
8 simprrl 505 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
98adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀 ∈ ℤ)
10 simpll 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑥 ∈ ℤ)
11 zre 8355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℝ)
1413adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℝ)
15 zre 8355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1615adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1716adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℝ)
1817adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐾 ∈ ℝ)
19 zre 8355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
2019adantr 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑥 ∈ ℝ)
21 letr 7194 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2214, 18, 20, 21syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀𝐾𝐾𝑥) → 𝑀𝑥))
2322imp 122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → 𝑀𝑥)
249, 10, 233jca 1118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℤ ∧ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) ∧ (𝑀𝐾𝐾𝑥)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
2524exp31 356 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℤ → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝐾𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2625com23 77 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℤ → ((𝑀𝐾𝐾𝑥) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2726expdimp 255 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℤ ∧ 𝑀𝐾) → (𝐾𝑥 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2827impancom 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
2928com13 79 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
30293adant3 958 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝑀𝐾 → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3130com12 30 . . . . . . . . . . . . . . . . . 18 (𝑀𝐾 → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3231adantr 270 . . . . . . . . . . . . . . . . 17 ((𝑀𝐾𝐿𝑁) → (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))))
3332impcom 123 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3433com12 30 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3534adantr 270 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥)))
3635imp 122 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
37 eluz2 8625 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
3836, 37sylibr 132 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (ℤ𝑀))
39 simpl2r 992 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑁 ∈ ℤ)
4039adantl 271 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑁 ∈ ℤ)
4119adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℝ)
42 zre 8355 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4342ad3antlr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝐿 ∈ ℝ)
44 zre 8355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4544adantl 271 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4645adantl 271 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
4746adantr 270 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
48 ltletr 7200 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
4941, 43, 47, 48syl3anc 1169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁))
5049ex 113 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑥 ∈ ℤ → ((𝑥 < 𝐿𝐿𝑁) → 𝑥 < 𝑁)))
5150com23 77 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
52513adant3 958 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑥 < 𝐿𝐿𝑁) → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5352expcomd 1370 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → (𝐿𝑁 → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5453adantld 272 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁))))
5554imp 122 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 < 𝐿 → (𝑥 ∈ ℤ → 𝑥 < 𝑁)))
5655com13 79 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5756adantr 270 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁)))
5857imp 122 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 < 𝑁))
5958imp 122 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 < 𝑁)
60 elfzo2 9160 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀..^𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑥 < 𝑁))
6138, 40, 59, 60syl3anbrc 1122 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝐾𝑥) ∧ 𝑥 < 𝐿) ∧ (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁))) → 𝑥 ∈ (𝑀..^𝑁))
6261exp31 356 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
63623adant1 956 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
647, 63sylbi 119 . . . . . . . 8 (𝑥 ∈ (ℤ𝐾) → (𝑥 < 𝐿 → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁))))
6564imp 122 . . . . . . 7 ((𝑥 ∈ (ℤ𝐾) ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
66653adant2 957 . . . . . 6 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐿 ∈ ℤ ∧ 𝑥 < 𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
676, 66sylbi 119 . . . . 5 (𝑥 ∈ (𝐾..^𝐿) → ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → 𝑥 ∈ (𝑀..^𝑁)))
6867com12 30 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝑥 ∈ (𝐾..^𝐿) → 𝑥 ∈ (𝑀..^𝑁)))
6968ssrdv 3005 . . 3 ((((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) ∧ (𝑀𝐾𝐿𝑁)) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁))
7069ex 113 . 2 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝑀𝐾𝐿𝑁) → (𝐾..^𝐿) ⊆ (𝑀..^𝑁)))
715, 70impbid 127 1 (((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ↔ (𝑀𝐾𝐿𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919  wcel 1433  wss 2973   class class class wbr 3785  cfv 4922  (class class class)co 5532  cr 6980   < clt 7153  cle 7154  cz 8351  cuz 8619  ..^cfzo 9152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator