ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d GIF version

Theorem tfrlemi14d 5970
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemi14d.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi14d (𝜑 → dom recs(𝐹) = On)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝜑,𝑓,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlemi14d
Dummy variables 𝑔 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 5957 . . 3 Ord dom recs(𝐹)
3 ordsson 4236 . . 3 (Ord dom recs(𝐹) → dom recs(𝐹) ⊆ On)
42, 3mp1i 10 . 2 (𝜑 → dom recs(𝐹) ⊆ On)
5 tfrlemi14d.2 . . . . . . . 8 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
61, 5tfrlemi1 5969 . . . . . . 7 ((𝜑𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
75ad2antrr 471 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
8 simplr 496 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ On)
9 simprl 497 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
10 fneq2 5008 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
11 raleq 2549 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1210, 11anbi12d 456 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1312rspcev 2701 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1413adantll 459 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
15 vex 2604 . . . . . . . . . . 11 𝑔 ∈ V
161, 15tfrlem3a 5948 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1714, 16sylibr 132 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔𝐴)
181, 7, 8, 9, 17tfrlemisucaccv 5962 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
19 vex 2604 . . . . . . . . . . . 12 𝑧 ∈ V
205tfrlem3-2d 5951 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
2120simprd 112 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑔) ∈ V)
22 opexg 3983 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
2319, 21, 22sylancr 405 . . . . . . . . . . 11 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
24 snidg 3423 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → ⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩})
25 elun2 3140 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩} → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2623, 24, 253syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2726ad2antrr 471 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
28 opeldmg 4558 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
2919, 21, 28sylancr 405 . . . . . . . . . 10 (𝜑 → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3029ad2antrr 471 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3127, 30mpd 13 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
32 dmeq 4553 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3332eleq2d 2148 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3433rspcev 2701 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
3518, 31, 34syl2anc 403 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
366, 35exlimddv 1819 . . . . . 6 ((𝜑𝑧 ∈ On) → ∃𝐴 𝑧 ∈ dom )
37 eliun 3682 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
3836, 37sylibr 132 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 𝐴 dom )
3938ex 113 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 𝐴 dom ))
4039ssrdv 3005 . . 3 (𝜑 → On ⊆ 𝐴 dom )
411recsfval 5954 . . . . 5 recs(𝐹) = 𝐴
4241dmeqi 4554 . . . 4 dom recs(𝐹) = dom 𝐴
43 dmuni 4563 . . . 4 dom 𝐴 = 𝐴 dom
4442, 43eqtri 2101 . . 3 dom recs(𝐹) = 𝐴 dom
4540, 44syl6sseqr 3046 . 2 (𝜑 → On ⊆ dom recs(𝐹))
464, 45eqssd 3016 1 (𝜑 → dom recs(𝐹) = On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  {cab 2067  wral 2348  wrex 2349  Vcvv 2601  cun 2971  wss 2973  {csn 3398  cop 3401   cuni 3601   ciun 3678  Ord word 4117  Oncon0 4118  dom cdm 4363  cres 4365  Fun wfun 4916   Fn wfn 4917  cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfri1d  5972
  Copyright terms: Public domain W3C validator