| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2nd2val | Structured version Visualization version Unicode version | ||
| Description: Value of an alternate
definition of the |
| Ref | Expression |
|---|---|
| 2nd2val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5177 |
. . 3
| |
| 2 | fveq2 6191 |
. . . . . 6
| |
| 3 | df-ov 6653 |
. . . . . . 7
| |
| 4 | vex 3203 |
. . . . . . . 8
| |
| 5 | vex 3203 |
. . . . . . . 8
| |
| 6 | simpr 477 |
. . . . . . . . 9
| |
| 7 | mpt2v 6750 |
. . . . . . . . . 10
| |
| 8 | 7 | eqcomi 2631 |
. . . . . . . . 9
|
| 9 | 6, 8, 5 | ovmpt2a 6791 |
. . . . . . . 8
|
| 10 | 4, 5, 9 | mp2an 708 |
. . . . . . 7
|
| 11 | 3, 10 | eqtr3i 2646 |
. . . . . 6
|
| 12 | 2, 11 | syl6eq 2672 |
. . . . 5
|
| 13 | 4, 5 | op2ndd 7179 |
. . . . 5
|
| 14 | 12, 13 | eqtr4d 2659 |
. . . 4
|
| 15 | 14 | exlimivv 1860 |
. . 3
|
| 16 | 1, 15 | sylbi 207 |
. 2
|
| 17 | vex 3203 |
. . . . . . . . . 10
| |
| 18 | vex 3203 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | pm3.2i 471 |
. . . . . . . . 9
|
| 20 | ax6ev 1890 |
. . . . . . . . 9
| |
| 21 | 19, 20 | 2th 254 |
. . . . . . . 8
|
| 22 | 21 | opabbii 4717 |
. . . . . . 7
|
| 23 | df-xp 5120 |
. . . . . . 7
| |
| 24 | dmoprab 6741 |
. . . . . . 7
| |
| 25 | 22, 23, 24 | 3eqtr4ri 2655 |
. . . . . 6
|
| 26 | 25 | eleq2i 2693 |
. . . . 5
|
| 27 | ndmfv 6218 |
. . . . 5
| |
| 28 | 26, 27 | sylnbir 321 |
. . . 4
|
| 29 | rnsnn0 5601 |
. . . . . . . 8
| |
| 30 | 29 | biimpri 218 |
. . . . . . 7
|
| 31 | 30 | necon1bi 2822 |
. . . . . 6
|
| 32 | 31 | unieqd 4446 |
. . . . 5
|
| 33 | uni0 4465 |
. . . . 5
| |
| 34 | 32, 33 | syl6eq 2672 |
. . . 4
|
| 35 | 28, 34 | eqtr4d 2659 |
. . 3
|
| 36 | 2ndval 7171 |
. . 3
| |
| 37 | 35, 36 | syl6eqr 2674 |
. 2
|
| 38 | 16, 37 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-2nd 7169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |