Step | Hyp | Ref
| Expression |
1 | | frgrusgr 27124 |
. . . . 5
 FriendGraph USGraph  |
2 | | usgrupgr 26077 |
. . . . 5
 USGraph UPGraph  |
3 | 1, 2 | syl 17 |
. . . 4
 FriendGraph UPGraph  |
4 | | eqid 2622 |
. . . . . . . . 9
Vtx  Vtx   |
5 | | eqid 2622 |
. . . . . . . . 9
Edg  Edg   |
6 | 4, 5 | upgr4cycl4dv4e 27045 |
. . . . . . . 8
  UPGraph
 Cycles        
Vtx    Vtx   
Vtx    Vtx         Edg 
   Edg       Edg     Edg             |
7 | 4, 5 | frgrusgrfrcond 27123 |
. . . . . . . . . . . 12
 FriendGraph  USGraph 
Vtx     Vtx 
     Vtx            Edg     |
8 | | simplrl 800 |
. . . . . . . . . . . . . . . . 17
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
Vtx    |
9 | | necom 2847 |
. . . . . . . . . . . . . . . . . . . . 21

  |
10 | 9 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . 20
   |
11 | 10 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . . 19
     |
12 | 11 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . 18
       Edg     Edg       Edg     Edg             |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . 17
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
  |
14 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . 17
  Vtx    
 Vtx 
   |
15 | 8, 13, 14 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
 Vtx       |
16 | | sneq 4187 |
. . . . . . . . . . . . . . . . . . . 20
       |
17 | 16 | difeq2d 3728 |
. . . . . . . . . . . . . . . . . . 19
  Vtx      Vtx       |
18 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . . . 22
         |
19 | 18 | preq1d 4274 |
. . . . . . . . . . . . . . . . . . . . 21
                     |
20 | 19 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . . . 20
           Edg           Edg     |
21 | 20 | reubidv 3126 |
. . . . . . . . . . . . . . . . . . 19
  
Vtx            Edg 
 Vtx            Edg     |
22 | 17, 21 | raleqbidv 3152 |
. . . . . . . . . . . . . . . . . 18
  
 Vtx       Vtx            Edg    Vtx       Vtx            Edg     |
23 | 22 | rspcv 3305 |
. . . . . . . . . . . . . . . . 17
 Vtx 
 
Vtx     Vtx 
     Vtx            Edg    Vtx       Vtx            Edg     |
24 | 23 | ad3antrrr 766 |
. . . . . . . . . . . . . . . 16
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
 
Vtx     Vtx 
     Vtx            Edg    Vtx       Vtx            Edg     |
25 | | preq2 4269 |
. . . . . . . . . . . . . . . . . . . 20
         |
26 | 25 | preq2d 4275 |
. . . . . . . . . . . . . . . . . . 19
                     |
27 | 26 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . 18
           Edg           Edg     |
28 | 27 | reubidv 3126 |
. . . . . . . . . . . . . . . . 17
  
Vtx            Edg 
 Vtx            Edg     |
29 | 28 | rspcv 3305 |
. . . . . . . . . . . . . . . 16
  Vtx        Vtx 
     Vtx            Edg   Vtx            Edg     |
30 | 15, 24, 29 | sylsyld 61 |
. . . . . . . . . . . . . . 15
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
 
Vtx     Vtx 
     Vtx            Edg   Vtx            Edg     |
31 | | prcom 4267 |
. . . . . . . . . . . . . . . . . . 19
       |
32 | 31 | preq1i 4271 |
. . . . . . . . . . . . . . . . . 18
             
     |
33 | 32 | sseq1i 3629 |
. . . . . . . . . . . . . . . . 17
          Edg      
    Edg    |
34 | 33 | reubii 3128 |
. . . . . . . . . . . . . . . 16
  Vtx            Edg 
 Vtx       
    Edg    |
35 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
      Edg     Edg       Edg     Edg        Edg     Edg     |
36 | 35 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . 19
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
    Edg 
   Edg     |
37 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
      Edg     Edg       Edg     Edg        Edg     Edg     |
38 | 37 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . 19
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
    Edg 
   Edg     |
39 | | simpllr 799 |
. . . . . . . . . . . . . . . . . . 19
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
Vtx    |
40 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
Vtx    |
41 | | simprr2 1110 |
. . . . . . . . . . . . . . . . . . . 20
       Edg     Edg       Edg     Edg             |
42 | 41 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
  |
43 | | 4cycl2vnunb 27154 |
. . . . . . . . . . . . . . . . . . 19
      Edg     Edg       Edg     Edg    Vtx  Vtx 
  
Vtx            Edg    |
44 | 36, 38, 39, 40, 42, 43 | syl113anc 1338 |
. . . . . . . . . . . . . . . . . 18
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           

Vtx            Edg    |
45 | 44 | pm2.21d 118 |
. . . . . . . . . . . . . . . . 17
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
 
Vtx            Edg         |
46 | 45 | com12 32 |
. . . . . . . . . . . . . . . 16
  Vtx            Edg      Vtx 
Vtx    Vtx 
Vtx          Edg     Edg       Edg     Edg           
       |
47 | 34, 46 | sylbi 207 |
. . . . . . . . . . . . . . 15
  Vtx            Edg      Vtx  Vtx  
 Vtx 
Vtx          Edg     Edg       Edg     Edg           
       |
48 | 30, 47 | syl6 35 |
. . . . . . . . . . . . . 14
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
 
Vtx     Vtx 
     Vtx            Edg      Vtx  Vtx  
 Vtx 
Vtx          Edg     Edg       Edg     Edg           
        |
49 | 48 | pm2.43b 55 |
. . . . . . . . . . . . 13
 
Vtx     Vtx 
     Vtx            Edg      Vtx  Vtx  
 Vtx 
Vtx          Edg     Edg       Edg     Edg           
       |
50 | 49 | adantl 482 |
. . . . . . . . . . . 12
  USGraph
 Vtx   
 Vtx       Vtx            Edg  
    Vtx 
Vtx    Vtx 
Vtx          Edg 
   Edg       Edg     Edg           
       |
51 | 7, 50 | sylbi 207 |
. . . . . . . . . . 11
 FriendGraph     Vtx 
Vtx    Vtx  Vtx          Edg     Edg       Edg     Edg           
       |
52 | 51 | expdcom 455 |
. . . . . . . . . 10
   Vtx 
Vtx    Vtx  Vtx           Edg 
   Edg       Edg     Edg            FriendGraph         |
53 | 52 | rexlimdvva 3038 |
. . . . . . . . 9
  Vtx  Vtx  
 
Vtx    Vtx         Edg 
   Edg       Edg     Edg            FriendGraph         |
54 | 53 | rexlimivv 3036 |
. . . . . . . 8
  Vtx    Vtx   
Vtx    Vtx         Edg 
   Edg       Edg     Edg            FriendGraph        |
55 | 6, 54 | syl 17 |
. . . . . . 7
  UPGraph
 Cycles         FriendGraph        |
56 | 55 | 3exp 1264 |
. . . . . 6
 UPGraph   Cycles         FriendGraph          |
57 | 56 | com34 91 |
. . . . 5
 UPGraph   Cycles    FriendGraph               |
58 | 57 | com23 86 |
. . . 4
 UPGraph  FriendGraph   Cycles                 |
59 | 3, 58 | mpcom 38 |
. . 3
 FriendGraph   Cycles                |
60 | 59 | imp 445 |
. 2
 
FriendGraph  Cycles                |
61 | | neqne 2802 |
. 2
           |
62 | 60, 61 | pm2.61d1 171 |
1
 
FriendGraph  Cycles          |