| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abladdsub4 | Structured version Visualization version Unicode version | ||
| Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| ablsubadd.b |
|
| ablsubadd.p |
|
| ablsubadd.m |
|
| Ref | Expression |
|---|---|
| abladdsub4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablgrp 18198 |
. . . 4
| |
| 2 | 1 | 3ad2ant1 1082 |
. . 3
|
| 3 | simp2l 1087 |
. . . 4
| |
| 4 | simp2r 1088 |
. . . 4
| |
| 5 | ablsubadd.b |
. . . . 5
| |
| 6 | ablsubadd.p |
. . . . 5
| |
| 7 | 5, 6 | grpcl 17430 |
. . . 4
|
| 8 | 2, 3, 4, 7 | syl3anc 1326 |
. . 3
|
| 9 | simp3l 1089 |
. . . 4
| |
| 10 | simp3r 1090 |
. . . 4
| |
| 11 | 5, 6 | grpcl 17430 |
. . . 4
|
| 12 | 2, 9, 10, 11 | syl3anc 1326 |
. . 3
|
| 13 | 5, 6 | grpcl 17430 |
. . . 4
|
| 14 | 2, 9, 4, 13 | syl3anc 1326 |
. . 3
|
| 15 | ablsubadd.m |
. . . 4
| |
| 16 | 5, 15 | grpsubrcan 17496 |
. . 3
|
| 17 | 2, 8, 12, 14, 16 | syl13anc 1328 |
. 2
|
| 18 | simp1 1061 |
. . . . 5
| |
| 19 | 5, 6, 15 | ablsub4 18218 |
. . . . 5
|
| 20 | 18, 3, 4, 9, 4, 19 | syl122anc 1335 |
. . . 4
|
| 21 | eqid 2622 |
. . . . . . 7
| |
| 22 | 5, 21, 15 | grpsubid 17499 |
. . . . . 6
|
| 23 | 2, 4, 22 | syl2anc 693 |
. . . . 5
|
| 24 | 23 | oveq2d 6666 |
. . . 4
|
| 25 | 5, 15 | grpsubcl 17495 |
. . . . . 6
|
| 26 | 2, 3, 9, 25 | syl3anc 1326 |
. . . . 5
|
| 27 | 5, 6, 21 | grprid 17453 |
. . . . 5
|
| 28 | 2, 26, 27 | syl2anc 693 |
. . . 4
|
| 29 | 20, 24, 28 | 3eqtrd 2660 |
. . 3
|
| 30 | 5, 6, 15 | ablsub4 18218 |
. . . . 5
|
| 31 | 18, 9, 10, 9, 4, 30 | syl122anc 1335 |
. . . 4
|
| 32 | 5, 21, 15 | grpsubid 17499 |
. . . . . 6
|
| 33 | 2, 9, 32 | syl2anc 693 |
. . . . 5
|
| 34 | 33 | oveq1d 6665 |
. . . 4
|
| 35 | 5, 15 | grpsubcl 17495 |
. . . . . 6
|
| 36 | 2, 10, 4, 35 | syl3anc 1326 |
. . . . 5
|
| 37 | 5, 6, 21 | grplid 17452 |
. . . . 5
|
| 38 | 2, 36, 37 | syl2anc 693 |
. . . 4
|
| 39 | 31, 34, 38 | 3eqtrd 2660 |
. . 3
|
| 40 | 29, 39 | eqeq12d 2637 |
. 2
|
| 41 | 17, 40 | bitr3d 270 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-cmn 18195 df-abl 18196 |
| This theorem is referenced by: lmodvaddsub4 18915 |
| Copyright terms: Public domain | W3C validator |