![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version Unicode version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqid 2622 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | isgrp 17428 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | simplbi 476 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-grp 17425 |
This theorem is referenced by: grpcl 17430 grpass 17431 grpideu 17433 grpplusf 17434 grpplusfo 17435 grpsgrp 17446 dfgrp2 17447 grpidcl 17450 grplid 17452 grprid 17453 dfgrp3 17514 prdsgrpd 17525 prdsinvgd 17526 ghmgrp 17539 mulgaddcom 17564 mulginvcom 17565 mulgz 17568 mulgdirlem 17572 mulgneg2 17575 mulgass 17579 issubg3 17612 subgacs 17629 ghmmhm 17670 0ghm 17674 pwsdiagghm 17688 cntzsubg 17769 oppggrp 17787 gsumccatsymgsn 17846 symggen 17890 symgtrinv 17892 psgnunilem5 17914 psgnunilem2 17915 psgnuni 17919 psgneldm2 17924 psgnfitr 17937 lsmass 18083 lsmcntzr 18093 pj1ghm 18116 frgpmhm 18178 frgpuplem 18185 frgpupf 18186 frgpup1 18188 isabl2 18201 isabld 18206 gsumzinv 18345 telgsumfzslem 18385 telgsumfzs 18386 dprdssv 18415 dprdfid 18416 dprdfadd 18419 dprdfeq0 18421 dprdlub 18425 dmdprdsplitlem 18436 dprddisj2 18438 dpjidcl 18457 pgpfac1lem3a 18475 pgpfaclem3 18482 ringmnd 18556 unitabl 18668 unitsubm 18670 lmodvsmmulgdi 18898 psgnghm 19926 dsmmsubg 20087 frlm0 20098 mdetunilem7 20424 istgp2 21895 symgtgp 21905 clmmulg 22901 dchrptlem3 24991 abliso 29696 isarchi3 29741 ofldchr 29814 reofld 29840 pwssplit4 37659 pwslnmlem2 37663 gicabl 37669 mendring 37762 c0ghm 41911 c0snghm 41916 lmodvsmdi 42163 lincvalsng 42205 lincvalsc0 42210 linc0scn0 42212 linc1 42214 lcoel0 42217 lincsum 42218 lincsumcl 42220 snlindsntor 42260 |
Copyright terms: Public domain | W3C validator |