MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   Unicode version

Theorem acni 8868
Description: The property of being a choice set of length  A. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) )
Distinct variable groups:    x, g, A    g, F, x    g, X, x

Proof of Theorem acni
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . . 5  |-  ( X  e. AC  A  ->  ~P X  e.  _V )
2 difexg 4808 . . . . 5  |-  ( ~P X  e.  _V  ->  ( ~P X  \  { (/)
} )  e.  _V )
31, 2syl 17 . . . 4  |-  ( X  e. AC  A  ->  ( ~P X  \  { (/) } )  e.  _V )
4 acnrcl 8865 . . . 4  |-  ( X  e. AC  A  ->  A  e. 
_V )
53, 4elmapd 7871 . . 3  |-  ( X  e. AC  A  ->  ( F  e.  ( ( ~P X  \  { (/) } )  ^m  A )  <-> 
F : A --> ( ~P X  \  { (/) } ) ) )
65biimpar 502 . 2  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  F  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )
7 isacn 8867 . . . . 5  |-  ( ( X  e. AC  A  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
84, 7mpdan 702 . . . 4  |-  ( X  e. AC  A  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
98ibi 256 . . 3  |-  ( X  e. AC  A  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
109adantr 481 . 2  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
11 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
1211eleq2d 2687 . . . . 5  |-  ( f  =  F  ->  (
( g `  x
)  e.  ( f `
 x )  <->  ( g `  x )  e.  ( F `  x ) ) )
1312ralbidv 2986 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  A  ( g `  x
)  e.  ( f `
 x )  <->  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
1413exbidv 1850 . . 3  |-  ( f  =  F  ->  ( E. g A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  E. g A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
1514rspcv 3305 . 2  |-  ( F  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  ( A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
166, 10, 15sylc 65 1  |-  ( ( X  e. AC  A  /\  F : A --> ( ~P X  \  { (/) } ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( F `
 x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-acn 8768
This theorem is referenced by:  acni2  8869
  Copyright terms: Public domain W3C validator