MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni2 Structured version   Visualization version   Unicode version

Theorem acni2 8869
Description: The property of being a choice set of length  A. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni2  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  ->  E. g ( g : A --> X  /\  A. x  e.  A  (
g `  x )  e.  B ) )
Distinct variable groups:    x, g, A    B, g    g, X, x
Allowed substitution hint:    B( x)

Proof of Theorem acni2
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4317 . . . . . . 7  |-  ( B  e.  ( ~P X  \  { (/) } )  <->  ( B  e.  ~P X  /\  B  =/=  (/) ) )
2 elpw2g 4827 . . . . . . . 8  |-  ( X  e. AC  A  ->  ( B  e.  ~P X  <->  B  C_  X
) )
32anbi1d 741 . . . . . . 7  |-  ( X  e. AC  A  ->  ( ( B  e.  ~P X  /\  B  =/=  (/) )  <->  ( B  C_  X  /\  B  =/=  (/) ) ) )
41, 3syl5bb 272 . . . . . 6  |-  ( X  e. AC  A  ->  ( B  e.  ( ~P X  \  { (/) } )  <->  ( B  C_  X  /\  B  =/=  (/) ) ) )
54ralbidv 2986 . . . . 5  |-  ( X  e. AC  A  ->  ( A. x  e.  A  B  e.  ( ~P X  \  { (/) } )  <->  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) ) )
65biimpar 502 . . . 4  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  ->  A. x  e.  A  B  e.  ( ~P X  \  { (/) } ) )
7 eqid 2622 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
87fmpt 6381 . . . 4  |-  ( A. x  e.  A  B  e.  ( ~P X  \  { (/) } )  <->  ( x  e.  A  |->  B ) : A --> ( ~P X  \  { (/) } ) )
96, 8sylib 208 . . 3  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  -> 
( x  e.  A  |->  B ) : A --> ( ~P X  \  { (/)
} ) )
10 acni 8868 . . 3  |-  ( ( X  e. AC  A  /\  ( x  e.  A  |->  B ) : A --> ( ~P X  \  { (/)
} ) )  ->  E. f A. y  e.  A  ( f `  y )  e.  ( ( x  e.  A  |->  B ) `  y
) )
119, 10syldan 487 . 2  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  ->  E. f A. y  e.  A  ( f `  y )  e.  ( ( x  e.  A  |->  B ) `  y
) )
12 nffvmpt1 6199 . . . . . 6  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
1312nfel2 2781 . . . . 5  |-  F/ x
( f `  y
)  e.  ( ( x  e.  A  |->  B ) `  y )
14 nfv 1843 . . . . 5  |-  F/ y ( f `  x
)  e.  ( ( x  e.  A  |->  B ) `  x )
15 fveq2 6191 . . . . . 6  |-  ( y  =  x  ->  (
f `  y )  =  ( f `  x ) )
16 fveq2 6191 . . . . . 6  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
1715, 16eleq12d 2695 . . . . 5  |-  ( y  =  x  ->  (
( f `  y
)  e.  ( ( x  e.  A  |->  B ) `  y )  <-> 
( f `  x
)  e.  ( ( x  e.  A  |->  B ) `  x ) ) )
1813, 14, 17cbvral 3167 . . . 4  |-  ( A. y  e.  A  (
f `  y )  e.  ( ( x  e.  A  |->  B ) `  y )  <->  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
) )
19 simplr 792 . . . . . . . . . 10  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )
20 simplr 792 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  x  e.  A
)
21 simpll 790 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  X  e. AC  A )
22 simpr 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  B  C_  X
)
2321, 22ssexd 4805 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  B  e.  _V )
247fvmpt2 6291 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
2520, 23, 24syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  ( ( x  e.  A  |->  B ) `
 x )  =  B )
2625eleq2d 2687 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e. AC  A  /\  x  e.  A )  /\  B  C_  X )  ->  ( ( f `
 x )  e.  ( ( x  e.  A  |->  B ) `  x )  <->  ( f `  x )  e.  B
) )
2726ex 450 . . . . . . . . . . . . . . 15  |-  ( ( X  e. AC  A  /\  x  e.  A )  ->  ( B  C_  X  ->  ( ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  <->  ( f `  x )  e.  B
) ) )
2827adantrd 484 . . . . . . . . . . . . . 14  |-  ( ( X  e. AC  A  /\  x  e.  A )  ->  ( ( B  C_  X  /\  B  =/=  (/) )  -> 
( ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  <->  ( f `  x )  e.  B
) ) )
2928ralimdva 2962 . . . . . . . . . . . . 13  |-  ( X  e. AC  A  ->  ( A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) )  ->  A. x  e.  A  ( (
f `  x )  e.  ( ( x  e.  A  |->  B ) `  x )  <->  ( f `  x )  e.  B
) ) )
3029imp 445 . . . . . . . . . . . 12  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  ->  A. x  e.  A  ( ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  <->  ( f `  x )  e.  B
) )
31 ralbi 3068 . . . . . . . . . . . 12  |-  ( A. x  e.  A  (
( f `  x
)  e.  ( ( x  e.  A  |->  B ) `  x )  <-> 
( f `  x
)  e.  B )  ->  ( A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  <->  A. x  e.  A  ( f `  x
)  e.  B ) )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  -> 
( A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  <->  A. x  e.  A  ( f `  x
)  e.  B ) )
3332biimpa 501 . . . . . . . . . 10  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  A. x  e.  A  ( f `  x
)  e.  B )
34 ssel 3597 . . . . . . . . . . . 12  |-  ( B 
C_  X  ->  (
( f `  x
)  e.  B  -> 
( f `  x
)  e.  X ) )
3534adantr 481 . . . . . . . . . . 11  |-  ( ( B  C_  X  /\  B  =/=  (/) )  ->  (
( f `  x
)  e.  B  -> 
( f `  x
)  e.  X ) )
3635ral2imi 2947 . . . . . . . . . 10  |-  ( A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) )  ->  ( A. x  e.  A  ( f `  x
)  e.  B  ->  A. x  e.  A  ( f `  x
)  e.  X ) )
3719, 33, 36sylc 65 . . . . . . . . 9  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  A. x  e.  A  ( f `  x
)  e.  X )
38 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
f `  x )  =  ( f `  y ) )
3938eleq1d 2686 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( f `  x
)  e.  X  <->  ( f `  y )  e.  X
) )
4039rspccva 3308 . . . . . . . . 9  |-  ( ( A. x  e.  A  ( f `  x
)  e.  X  /\  y  e.  A )  ->  ( f `  y
)  e.  X )
4137, 40sylan 488 . . . . . . . 8  |-  ( ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
) )  /\  y  e.  A )  ->  (
f `  y )  e.  X )
42 eqid 2622 . . . . . . . 8  |-  ( y  e.  A  |->  ( f `
 y ) )  =  ( y  e.  A  |->  ( f `  y ) )
4341, 42fmptd 6385 . . . . . . 7  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  ( y  e.  A  |->  ( f `  y ) ) : A --> X )
44 simpll 790 . . . . . . . 8  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  X  e. AC  A )
45 acnrcl 8865 . . . . . . . 8  |-  ( X  e. AC  A  ->  A  e. 
_V )
4644, 45syl 17 . . . . . . 7  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  A  e.  _V )
47 fex2 7121 . . . . . . 7  |-  ( ( ( y  e.  A  |->  ( f `  y
) ) : A --> X  /\  A  e.  _V  /\  X  e. AC  A )  ->  ( y  e.  A  |->  ( f `  y
) )  e.  _V )
4843, 46, 44, 47syl3anc 1326 . . . . . 6  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  ( y  e.  A  |->  ( f `  y ) )  e. 
_V )
49 fvex 6201 . . . . . . . . . . 11  |-  ( f `
 x )  e. 
_V
5015, 42, 49fvmpt 6282 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( y  e.  A  |->  ( f `  y
) ) `  x
)  =  ( f `
 x ) )
5150eleq1d 2686 . . . . . . . . 9  |-  ( x  e.  A  ->  (
( ( y  e.  A  |->  ( f `  y ) ) `  x )  e.  B  <->  ( f `  x )  e.  B ) )
5251ralbiia 2979 . . . . . . . 8  |-  ( A. x  e.  A  (
( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B  <->  A. x  e.  A  ( f `  x )  e.  B
)
5333, 52sylibr 224 . . . . . . 7  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  A. x  e.  A  ( ( y  e.  A  |->  ( f `  y ) ) `  x )  e.  B
)
5443, 53jca 554 . . . . . 6  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  ( ( y  e.  A  |->  ( f `
 y ) ) : A --> X  /\  A. x  e.  A  ( ( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B ) )
55 feq1 6026 . . . . . . . 8  |-  ( g  =  ( y  e.  A  |->  ( f `  y ) )  -> 
( g : A --> X 
<->  ( y  e.  A  |->  ( f `  y
) ) : A --> X ) )
56 fveq1 6190 . . . . . . . . . 10  |-  ( g  =  ( y  e.  A  |->  ( f `  y ) )  -> 
( g `  x
)  =  ( ( y  e.  A  |->  ( f `  y ) ) `  x ) )
5756eleq1d 2686 . . . . . . . . 9  |-  ( g  =  ( y  e.  A  |->  ( f `  y ) )  -> 
( ( g `  x )  e.  B  <->  ( ( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B ) )
5857ralbidv 2986 . . . . . . . 8  |-  ( g  =  ( y  e.  A  |->  ( f `  y ) )  -> 
( A. x  e.  A  ( g `  x )  e.  B  <->  A. x  e.  A  ( ( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B ) )
5955, 58anbi12d 747 . . . . . . 7  |-  ( g  =  ( y  e.  A  |->  ( f `  y ) )  -> 
( ( g : A --> X  /\  A. x  e.  A  (
g `  x )  e.  B )  <->  ( (
y  e.  A  |->  ( f `  y ) ) : A --> X  /\  A. x  e.  A  ( ( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B ) ) )
6059spcegv 3294 . . . . . 6  |-  ( ( y  e.  A  |->  ( f `  y ) )  e.  _V  ->  ( ( ( y  e.  A  |->  ( f `  y ) ) : A --> X  /\  A. x  e.  A  (
( y  e.  A  |->  ( f `  y
) ) `  x
)  e.  B )  ->  E. g ( g : A --> X  /\  A. x  e.  A  ( g `  x )  e.  B ) ) )
6148, 54, 60sylc 65 . . . . 5  |-  ( ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  /\  A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `
 x ) )  ->  E. g ( g : A --> X  /\  A. x  e.  A  ( g `  x )  e.  B ) )
6261ex 450 . . . 4  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  -> 
( A. x  e.  A  ( f `  x )  e.  ( ( x  e.  A  |->  B ) `  x
)  ->  E. g
( g : A --> X  /\  A. x  e.  A  ( g `  x )  e.  B
) ) )
6318, 62syl5bi 232 . . 3  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  -> 
( A. y  e.  A  ( f `  y )  e.  ( ( x  e.  A  |->  B ) `  y
)  ->  E. g
( g : A --> X  /\  A. x  e.  A  ( g `  x )  e.  B
) ) )
6463exlimdv 1861 . 2  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  -> 
( E. f A. y  e.  A  (
f `  y )  e.  ( ( x  e.  A  |->  B ) `  y )  ->  E. g
( g : A --> X  /\  A. x  e.  A  ( g `  x )  e.  B
) ) )
6511, 64mpd 15 1  |-  ( ( X  e. AC  A  /\  A. x  e.  A  ( B  C_  X  /\  B  =/=  (/) ) )  ->  E. g ( g : A --> X  /\  A. x  e.  A  (
g `  x )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   -->wf 5884   ` cfv 5888  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-acn 8768
This theorem is referenced by:  acni3  8870  acndom  8874  acnnum  8875  acndom2  8877  dfacacn  8963
  Copyright terms: Public domain W3C validator