MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homacd Structured version   Visualization version   Unicode version

Theorem homacd 16691
Description: The codomain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h  |-  H  =  (Homa
`  C )
Assertion
Ref Expression
homacd  |-  ( F  e.  ( X H Y )  ->  (coda `  F
)  =  Y )

Proof of Theorem homacd
StepHypRef Expression
1 df-coda 16675 . . . 4  |- coda  =  ( 2nd  o. 
1st )
21fveq1i 6192 . . 3  |-  (coda `  F
)  =  ( ( 2nd  o.  1st ) `  F )
3 fo1st 7188 . . . . 5  |-  1st : _V -onto-> _V
4 fof 6115 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
53, 4ax-mp 5 . . . 4  |-  1st : _V
--> _V
6 elex 3212 . . . 4  |-  ( F  e.  ( X H Y )  ->  F  e.  _V )
7 fvco3 6275 . . . 4  |-  ( ( 1st : _V --> _V  /\  F  e.  _V )  ->  ( ( 2nd  o.  1st ) `  F )  =  ( 2nd `  ( 1st `  F ) ) )
85, 6, 7sylancr 695 . . 3  |-  ( F  e.  ( X H Y )  ->  (
( 2nd  o.  1st ) `  F )  =  ( 2nd `  ( 1st `  F ) ) )
92, 8syl5eq 2668 . 2  |-  ( F  e.  ( X H Y )  ->  (coda `  F
)  =  ( 2nd `  ( 1st `  F
) ) )
10 homahom.h . . . . . 6  |-  H  =  (Homa
`  C )
1110homarel 16686 . . . . 5  |-  Rel  ( X H Y )
12 1st2ndbr 7217 . . . . 5  |-  ( ( Rel  ( X H Y )  /\  F  e.  ( X H Y ) )  ->  ( 1st `  F ) ( X H Y ) ( 2nd `  F
) )
1311, 12mpan 706 . . . 4  |-  ( F  e.  ( X H Y )  ->  ( 1st `  F ) ( X H Y ) ( 2nd `  F
) )
1410homa1 16687 . . . 4  |-  ( ( 1st `  F ) ( X H Y ) ( 2nd `  F
)  ->  ( 1st `  F )  =  <. X ,  Y >. )
1513, 14syl 17 . . 3  |-  ( F  e.  ( X H Y )  ->  ( 1st `  F )  = 
<. X ,  Y >. )
1615fveq2d 6195 . 2  |-  ( F  e.  ( X H Y )  ->  ( 2nd `  ( 1st `  F
) )  =  ( 2nd `  <. X ,  Y >. ) )
17 eqid 2622 . . . 4  |-  ( Base `  C )  =  (
Base `  C )
1810, 17homarcl2 16685 . . 3  |-  ( F  e.  ( X H Y )  ->  ( X  e.  ( Base `  C )  /\  Y  e.  ( Base `  C
) ) )
19 op2ndg 7181 . . 3  |-  ( ( X  e.  ( Base `  C )  /\  Y  e.  ( Base `  C
) )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
2018, 19syl 17 . 2  |-  ( F  e.  ( X H Y )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
219, 16, 203eqtrd 2660 1  |-  ( F  e.  ( X H Y )  ->  (coda `  F
)  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    o. ccom 5118   Rel wrel 5119   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857  codaccoda 16671  Homachoma 16673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-coda 16675  df-homa 16676
This theorem is referenced by:  arwhoma  16695  idacd  16712  homdmcoa  16717  coaval  16718
  Copyright terms: Public domain W3C validator