| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coapm | Structured version Visualization version Unicode version | ||
| Description: Composition of arrows is a partial binary operation on arrows. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| coapm.o |
|
| coapm.a |
|
| Ref | Expression |
|---|---|
| coapm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coapm.o |
. . . . . 6
| |
| 2 | coapm.a |
. . . . . 6
| |
| 3 | eqid 2622 |
. . . . . 6
| |
| 4 | 1, 2, 3 | coafval 16714 |
. . . . 5
|
| 5 | 4 | mpt2fun 6762 |
. . . 4
|
| 6 | funfn 5918 |
. . . 4
| |
| 7 | 5, 6 | mpbi 220 |
. . 3
|
| 8 | 1, 2 | dmcoass 16716 |
. . . . . . . . 9
|
| 9 | 8 | sseli 3599 |
. . . . . . . 8
|
| 10 | 1st2nd2 7205 |
. . . . . . . 8
| |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
|
| 12 | 11 | fveq2d 6195 |
. . . . . 6
|
| 13 | df-ov 6653 |
. . . . . 6
| |
| 14 | 12, 13 | syl6eqr 2674 |
. . . . 5
|
| 15 | eqid 2622 |
. . . . . . 7
| |
| 16 | 2, 15 | homarw 16696 |
. . . . . 6
|
| 17 | id 22 |
. . . . . . . . . . . . 13
| |
| 18 | 11, 17 | eqeltrrd 2702 |
. . . . . . . . . . . 12
|
| 19 | df-br 4654 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | sylibr 224 |
. . . . . . . . . . 11
|
| 21 | 1, 2 | eldmcoa 16715 |
. . . . . . . . . . 11
|
| 22 | 20, 21 | sylib 208 |
. . . . . . . . . 10
|
| 23 | 22 | simp1d 1073 |
. . . . . . . . 9
|
| 24 | 2, 15 | arwhoma 16695 |
. . . . . . . . 9
|
| 25 | 23, 24 | syl 17 |
. . . . . . . 8
|
| 26 | 22 | simp3d 1075 |
. . . . . . . . 9
|
| 27 | 26 | oveq2d 6666 |
. . . . . . . 8
|
| 28 | 25, 27 | eleqtrd 2703 |
. . . . . . 7
|
| 29 | 22 | simp2d 1074 |
. . . . . . . 8
|
| 30 | 2, 15 | arwhoma 16695 |
. . . . . . . 8
|
| 31 | 29, 30 | syl 17 |
. . . . . . 7
|
| 32 | 1, 15, 28, 31 | coahom 16720 |
. . . . . 6
|
| 33 | 16, 32 | sseldi 3601 |
. . . . 5
|
| 34 | 14, 33 | eqeltrd 2701 |
. . . 4
|
| 35 | 34 | rgen 2922 |
. . 3
|
| 36 | ffnfv 6388 |
. . 3
| |
| 37 | 7, 35, 36 | mpbir2an 955 |
. 2
|
| 38 | fvex 6201 |
. . . 4
| |
| 39 | 2, 38 | eqeltri 2697 |
. . 3
|
| 40 | 39, 39 | xpex 6962 |
. . 3
|
| 41 | 39, 40 | elpm2 7889 |
. 2
|
| 42 | 37, 8, 41 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-ot 4186 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-pm 7860 df-cat 16329 df-doma 16674 df-coda 16675 df-homa 16676 df-arw 16677 df-coa 16706 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |