| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asymref2 | Structured version Visualization version Unicode version | ||
| Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| asymref2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asymref 5512 |
. 2
| |
| 2 | albiim 1816 |
. . 3
| |
| 3 | 2 | ralbii 2980 |
. 2
|
| 4 | r19.26 3064 |
. . 3
| |
| 5 | ancom 466 |
. . 3
| |
| 6 | equcom 1945 |
. . . . . . . 8
| |
| 7 | 6 | imbi1i 339 |
. . . . . . 7
|
| 8 | 7 | albii 1747 |
. . . . . 6
|
| 9 | breq2 4657 |
. . . . . . . . 9
| |
| 10 | breq1 4656 |
. . . . . . . . 9
| |
| 11 | 9, 10 | anbi12d 747 |
. . . . . . . 8
|
| 12 | anidm 676 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl6bb 276 |
. . . . . . 7
|
| 14 | 13 | equsalvw 1931 |
. . . . . 6
|
| 15 | 8, 14 | bitri 264 |
. . . . 5
|
| 16 | 15 | ralbii 2980 |
. . . 4
|
| 17 | df-ral 2917 |
. . . . 5
| |
| 18 | df-br 4654 |
. . . . . . . . . . . . 13
| |
| 19 | vex 3203 |
. . . . . . . . . . . . . . 15
| |
| 20 | vex 3203 |
. . . . . . . . . . . . . . 15
| |
| 21 | 19, 20 | opeluu 4939 |
. . . . . . . . . . . . . 14
|
| 22 | 21 | simpld 475 |
. . . . . . . . . . . . 13
|
| 23 | 18, 22 | sylbi 207 |
. . . . . . . . . . . 12
|
| 24 | 23 | adantr 481 |
. . . . . . . . . . 11
|
| 25 | 24 | pm2.24d 147 |
. . . . . . . . . 10
|
| 26 | 25 | com12 32 |
. . . . . . . . 9
|
| 27 | 26 | alrimiv 1855 |
. . . . . . . 8
|
| 28 | id 22 |
. . . . . . . 8
| |
| 29 | 27, 28 | ja 173 |
. . . . . . 7
|
| 30 | ax-1 6 |
. . . . . . 7
| |
| 31 | 29, 30 | impbii 199 |
. . . . . 6
|
| 32 | 31 | albii 1747 |
. . . . 5
|
| 33 | 17, 32 | bitri 264 |
. . . 4
|
| 34 | 16, 33 | anbi12i 733 |
. . 3
|
| 35 | 4, 5, 34 | 3bitri 286 |
. 2
|
| 36 | 1, 3, 35 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-res 5126 |
| This theorem is referenced by: pslem 17206 psss 17214 |
| Copyright terms: Public domain | W3C validator |