MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intirr Structured version   Visualization version   Unicode version

Theorem intirr 5514
Description: Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intirr  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Distinct variable group:    x, R

Proof of Theorem intirr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 incom 3805 . . . 4  |-  ( R  i^i  _I  )  =  (  _I  i^i  R
)
21eqeq1i 2627 . . 3  |-  ( ( R  i^i  _I  )  =  (/)  <->  (  _I  i^i  R )  =  (/) )
3 disj2 4024 . . 3  |-  ( (  _I  i^i  R )  =  (/)  <->  _I  C_  ( _V 
\  R ) )
4 reli 5249 . . . 4  |-  Rel  _I
5 ssrel 5207 . . . 4  |-  ( Rel 
_I  ->  (  _I  C_  ( _V  \  R )  <->  A. x A. y (
<. x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) ) )
64, 5ax-mp 5 . . 3  |-  (  _I  C_  ( _V  \  R
)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
72, 3, 63bitri 286 . 2  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x A. y
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
8 equcom 1945 . . . . 5  |-  ( y  =  x  <->  x  =  y )
9 vex 3203 . . . . . 6  |-  y  e. 
_V
109ideq 5274 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
11 df-br 4654 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
128, 10, 113bitr2i 288 . . . 4  |-  ( y  =  x  <->  <. x ,  y >.  e.  _I  )
13 opex 4932 . . . . . . 7  |-  <. x ,  y >.  e.  _V
1413biantrur 527 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  R  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
15 eldif 3584 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  \  R
)  <->  ( <. x ,  y >.  e.  _V  /\ 
-.  <. x ,  y
>.  e.  R ) )
1614, 15bitr4i 267 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  R  <->  <. x ,  y
>.  e.  ( _V  \  R ) )
17 df-br 4654 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
1816, 17xchnxbir 323 . . . 4  |-  ( -.  x R y  <->  <. x ,  y >.  e.  ( _V  \  R ) )
1912, 18imbi12i 340 . . 3  |-  ( ( y  =  x  ->  -.  x R y )  <-> 
( <. x ,  y
>.  e.  _I  ->  <. x ,  y >.  e.  ( _V  \  R ) ) )
20192albii 1748 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x A. y ( <. x ,  y >.  e.  _I  -> 
<. x ,  y >.  e.  ( _V  \  R
) ) )
21 breq2 4657 . . . . 5  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
2221notbid 308 . . . 4  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
2322equsalvw 1931 . . 3  |-  ( A. y ( y  =  x  ->  -.  x R y )  <->  -.  x R x )
2423albii 1747 . 2  |-  ( A. x A. y ( y  =  x  ->  -.  x R y )  <->  A. x  -.  x R x )
257, 20, 243bitr2i 288 1  |-  ( ( R  i^i  _I  )  =  (/)  <->  A. x  -.  x R x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   <.cop 4183   class class class wbr 4653    _I cid 5023   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121
This theorem is referenced by:  hartogslem1  8447  hausdiag  21448
  Copyright terms: Public domain W3C validator