Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvrj2b Structured version   Visualization version   Unicode version

Theorem atcvrj2b 34718
Description: Condition for an atom to be covered by the join of two others. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atcvrj1x.l  |-  .<_  =  ( le `  K )
atcvrj1x.j  |-  .\/  =  ( join `  K )
atcvrj1x.c  |-  C  =  (  <o  `  K )
atcvrj1x.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atcvrj2b  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( Q  =/=  R  /\  P  .<_  ( Q 
.\/  R ) )  <-> 
P C ( Q 
.\/  R ) ) )

Proof of Theorem atcvrj2b
StepHypRef Expression
1 simpl3l 1116 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  Q  =/=  R )
21necomd 2849 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  R  =/=  Q )
3 simpl1 1064 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  K  e.  HL )
4 simpl23 1141 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  R  e.  A )
5 simpl22 1140 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  Q  e.  A )
6 atcvrj1x.j . . . . . . . 8  |-  .\/  =  ( join `  K )
7 atcvrj1x.c . . . . . . . 8  |-  C  =  (  <o  `  K )
8 atcvrj1x.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
96, 7, 8atcvr2 34704 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  Q  e.  A )  ->  ( R  =/=  Q  <->  R C ( Q  .\/  R ) ) )
103, 4, 5, 9syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  ( R  =/=  Q  <->  R C
( Q  .\/  R
) ) )
112, 10mpbid 222 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  R C ( Q  .\/  R ) )
12 breq1 4656 . . . . . 6  |-  ( P  =  R  ->  ( P C ( Q  .\/  R )  <->  R C ( Q 
.\/  R ) ) )
1312adantl 482 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  ( P C ( Q  .\/  R )  <->  R C ( Q 
.\/  R ) ) )
1411, 13mpbird 247 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =  R )  ->  P C ( Q  .\/  R ) )
15 simpl1 1064 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =/=  R )  ->  K  e.  HL )
16 simpl2 1065 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =/=  R )  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )
)
17 simpr 477 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =/=  R )  ->  P  =/=  R )
18 simpl3r 1117 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =/=  R )  ->  P  .<_  ( Q  .\/  R
) )
19 atcvrj1x.l . . . . . 6  |-  .<_  =  ( le `  K )
2019, 6, 7, 8atcvrj1 34717 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P C ( Q  .\/  R ) )
2115, 16, 17, 18, 20syl112anc 1330 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  /\  P  =/=  R )  ->  P C ( Q  .\/  R ) )
2214, 21pm2.61dane 2881 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) )  ->  P C ( Q  .\/  R ) )
23223expia 1267 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( Q  =/=  R  /\  P  .<_  ( Q 
.\/  R ) )  ->  P C ( Q  .\/  R ) ) )
24 hlatl 34647 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
2524ad2antrr 762 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  K  e.  AtLat )
26 simplr1 1103 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  P  e.  A )
27 eqid 2622 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
2827, 8atn0 34595 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  P  =/=  ( 0. `  K
) )
2925, 26, 28syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  P  =/=  ( 0. `  K
) )
30 simpll 790 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  K  e.  HL )
31 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
3231, 8atbase 34576 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3326, 32syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  P  e.  ( Base `  K
) )
34 simplr2 1104 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  Q  e.  A )
35 simplr3 1105 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  R  e.  A )
36 simpr 477 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  P C ( Q  .\/  R ) )
3731, 6, 27, 7, 8atcvrj0 34714 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  ( Base `  K )  /\  Q  e.  A  /\  R  e.  A )  /\  P C ( Q 
.\/  R ) )  ->  ( P  =  ( 0. `  K
)  <->  Q  =  R
) )
3830, 33, 34, 35, 36, 37syl131anc 1339 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  ( P  =  ( 0. `  K )  <->  Q  =  R ) )
3938necon3bid 2838 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  ( P  =/=  ( 0. `  K )  <->  Q  =/=  R ) )
4029, 39mpbid 222 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  Q  =/=  R )
41 hllat 34650 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
4241ad2antrr 762 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  K  e.  Lat )
4331, 8atbase 34576 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
4434, 43syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  Q  e.  ( Base `  K
) )
4531, 8atbase 34576 . . . . . . . 8  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
4635, 45syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  R  e.  ( Base `  K
) )
4731, 6latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
4842, 44, 46, 47syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
4930, 33, 483jca 1242 . . . . 5  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  ( K  e.  HL  /\  P  e.  ( Base `  K
)  /\  ( Q  .\/  R )  e.  (
Base `  K )
) )
5031, 19, 7cvrle 34565 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  ( Base `  K )  /\  ( Q  .\/  R )  e.  ( Base `  K
) )  /\  P C ( Q  .\/  R ) )  ->  P  .<_  ( Q  .\/  R
) )
5149, 50sylancom 701 . . . 4  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  P  .<_  ( Q  .\/  R
) )
5240, 51jca 554 . . 3  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  P C ( Q  .\/  R ) )  ->  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R
) ) )
5352ex 450 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  ( P C ( Q  .\/  R )  ->  ( Q  =/=  R  /\  P  .<_  ( Q  .\/  R ) ) ) )
5423, 53impbid 202 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  ->  (
( Q  =/=  R  /\  P  .<_  ( Q 
.\/  R ) )  <-> 
P C ( Q 
.\/  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   0.cp0 17037   Latclat 17045    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  atcvrj2  34719
  Copyright terms: Public domain W3C validator