| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version Unicode version | ||
| Description: Lemma for equivbnd2 33591 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| bnd2lem.1 |
|
| Ref | Expression |
|---|---|
| bnd2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnd2lem.1 |
. . . . . 6
| |
| 2 | resss 5422 |
. . . . . 6
| |
| 3 | 1, 2 | eqsstri 3635 |
. . . . 5
|
| 4 | dmss 5323 |
. . . . 5
| |
| 5 | 3, 4 | mp1i 13 |
. . . 4
|
| 6 | bndmet 33580 |
. . . . . 6
| |
| 7 | metf 22135 |
. . . . . 6
| |
| 8 | fdm 6051 |
. . . . . 6
| |
| 9 | 6, 7, 8 | 3syl 18 |
. . . . 5
|
| 10 | 9 | adantl 482 |
. . . 4
|
| 11 | metf 22135 |
. . . . . 6
| |
| 12 | fdm 6051 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | 13 | adantr 481 |
. . . 4
|
| 15 | 5, 10, 14 | 3sstr3d 3647 |
. . 3
|
| 16 | dmss 5323 |
. . 3
| |
| 17 | 15, 16 | syl 17 |
. 2
|
| 18 | dmxpid 5345 |
. 2
| |
| 19 | dmxpid 5345 |
. 2
| |
| 20 | 17, 18, 19 | 3sstr3g 3645 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-met 19740 df-bnd 33578 |
| This theorem is referenced by: equivbnd2 33591 prdsbnd2 33594 cntotbnd 33595 cnpwstotbnd 33596 |
| Copyright terms: Public domain | W3C validator |