Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Visualization version   Unicode version

Theorem cnpwstotbnd 33596
Description: A subset of  A ^
I, where  A  C_  CC, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y  |-  Y  =  ( (flds  A )  ^s  I )
cnpwstotbnd.d  |-  D  =  ( ( dist `  Y
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
cnpwstotbnd  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  D  e.  ( Bnd `  X ) ) )

Proof of Theorem cnpwstotbnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) )  =  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) )
2 eqid 2622 . . 3  |-  ( Base `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  =  ( Base `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )
3 eqid 2622 . . 3  |-  ( Base `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )
4 eqid 2622 . . 3  |-  ( (
dist `  ( (
I  X.  { (flds  A ) } ) `  x
) )  |`  (
( Base `  ( (
I  X.  { (flds  A ) } ) `  x
) )  X.  ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) ) ) )  =  ( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )
5 eqid 2622 . . 3  |-  ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  =  ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )
6 fvexd 6203 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (Scalar `  (flds  A ) )  e.  _V )
7 simpr 477 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  I  e.  Fin )
8 ovex 6678 . . . 4  |-  (flds  A )  e.  _V
9 fnconstg 6093 . . . 4  |-  ( (flds  A )  e.  _V  ->  (
I  X.  { (flds  A ) } )  Fn  I
)
108, 9mp1i 13 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
I  X.  { (flds  A ) } )  Fn  I
)
11 eqid 2622 . . 3  |-  ( (
dist `  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  =  ( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) )
12 cnfldms 22579 . . . . . 6  |-fld  e.  MetSp
13 cnex 10017 . . . . . . . 8  |-  CC  e.  _V
1413ssex 4802 . . . . . . 7  |-  ( A 
C_  CC  ->  A  e. 
_V )
1514ad2antrr 762 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  A  e.  _V )
16 ressms 22331 . . . . . 6  |-  ( (fld  e. 
MetSp  /\  A  e.  _V )  ->  (flds  A )  e.  MetSp )
1712, 15, 16sylancr 695 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  (flds  A )  e.  MetSp )
18 eqid 2622 . . . . . 6  |-  ( Base `  (flds  A ) )  =  (
Base `  (flds  A ) )
19 eqid 2622 . . . . . 6  |-  ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  =  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )
2018, 19msmet 22262 . . . . 5  |-  ( (flds  A )  e.  MetSp  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  ( Base `  (flds  A ) ) ) )
2117, 20syl 17 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  ( Base `  (flds  A ) ) ) )
228fvconst2 6469 . . . . . . 7  |-  ( x  e.  I  ->  (
( I  X.  {
(flds  A
) } ) `  x )  =  (flds  A ) )
2322adantl 482 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
I  X.  { (flds  A ) } ) `  x
)  =  (flds  A ) )
2423fveq2d 6195 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( dist `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( dist `  (flds  A )
) )
2523fveq2d 6195 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Base `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( Base `  (flds  A )
) )
2625sqxpeqd 5141 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) )  =  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
2724, 26reseq12d 5397 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  =  ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) ) )
2825fveq2d 6195 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Met `  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) )  =  ( Met `  ( Base `  (flds  A ) ) ) )
2921, 27, 283eltr4d 2716 . . 3  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  e.  ( Met `  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )
30 totbndbnd 33588 . . . . . 6  |-  ( ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  -> 
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )
31 eqid 2622 . . . . . . . . . . 11  |-  (flds  A )  =  (flds  A )
32 cnfldbas 19750 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
3331, 32ressbas2 15931 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  A  =  ( Base `  (flds  A )
) )
3433ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  A  =  ( Base `  (flds  A ) ) )
3534fveq2d 6195 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Met `  A )  =  ( Met `  ( Base `  (flds  A ) ) ) )
3621, 35eleqtrrd 2704 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  A
) )
37 eqid 2622 . . . . . . . . 9  |-  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )
3837bnd2lem 33590 . . . . . . . 8  |-  ( ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  e.  ( Met `  A
)  /\  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )  ->  y  C_  A )
3938ex 450 . . . . . . 7  |-  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  e.  ( Met `  A
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  ->  y  C_  A
) )
4036, 39syl 17 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  ->  y  C_  A
) )
4130, 40syl5 34 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  -> 
y  C_  A )
)
42 eqid 2622 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( y  X.  y
) )  =  ( ( abs  o.  -  )  |`  ( y  X.  y ) )
4342cntotbnd 33595 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) )
4443a1i 11 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y
)  <->  ( ( abs 
o.  -  )  |`  (
y  X.  y ) )  e.  ( Bnd `  y ) ) )
4534sseq2d 3633 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( y  C_  A  <->  y  C_  ( Base `  (flds  A ) ) ) )
4645biimpa 501 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  y  C_  ( Base `  (flds  A )
) )
47 xpss12 5225 . . . . . . . . . . 11  |-  ( ( y  C_  ( Base `  (flds  A ) )  /\  y  C_  ( Base `  (flds  A )
) )  ->  (
y  X.  y ) 
C_  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
4846, 46, 47syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
y  X.  y ) 
C_  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
4948resabs1d 5428 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( dist `  (flds  A )
)  |`  ( y  X.  y ) ) )
5015adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  A  e.  _V )
51 cnfldds 19756 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( dist ` fld )
5231, 51ressds 16073 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  (flds  A )
) )
5350, 52syl 17 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  ( abs  o.  -  )  =  ( dist `  (flds  A )
) )
5453reseq1d 5395 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( abs  o.  -  )  |`  ( y  X.  y
) )  =  ( ( dist `  (flds  A )
)  |`  ( y  X.  y ) ) )
5549, 54eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( abs  o.  -  )  |`  ( y  X.  y ) ) )
5655eleq1d 2686 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( ( abs  o.  -  )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y ) ) )
5755eleq1d 2686 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  <-> 
( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) ) )
5844, 56, 573bitr4d 300 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
5958ex 450 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( y  C_  A  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) ) )
6041, 40, 59pm5.21ndd 369 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
6127reseq1d 5395 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( dist `  ( (
I  X.  { (flds  A ) } ) `  x
) )  |`  (
( Base `  ( (
I  X.  { (flds  A ) } ) `  x
) )  X.  ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) ) ) )  |`  (
y  X.  y ) )  =  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) ) )
6261eleq1d 2686 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y ) ) )
6361eleq1d 2686 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
)  <->  ( ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
6460, 62, 633bitr4d 300 . . 3  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) ) )
651, 2, 3, 4, 5, 6, 7, 10, 11, 29, 64prdsbnd2 33594 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) )  e.  (
TotBnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( Bnd `  X
) ) )
66 cnpwstotbnd.d . . . 4  |-  D  =  ( ( dist `  Y
)  |`  ( X  X.  X ) )
67 cnpwstotbnd.y . . . . . . . 8  |-  Y  =  ( (flds  A )  ^s  I )
68 eqid 2622 . . . . . . . 8  |-  (Scalar `  (flds  A
) )  =  (Scalar `  (flds  A ) )
6967, 68pwsval 16146 . . . . . . 7  |-  ( ( (flds  A )  e.  _V  /\  I  e.  Fin )  ->  Y  =  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) ) )
708, 7, 69sylancr 695 . . . . . 6  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  Y  =  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )
7170fveq2d 6195 . . . . 5  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( dist `  Y )  =  ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) ) )
7271reseq1d 5395 . . . 4  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
( dist `  Y )  |`  ( X  X.  X
) )  =  ( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) ) )
7366, 72syl5eq 2668 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  D  =  ( ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) ) )
7473eleq1d 2686 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( TotBnd `  X )
) )
7573eleq1d 2686 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( Bnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( Bnd `  X
) ) )
7665, 74, 753bitr4d 300 1  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  D  e.  ( Bnd `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177    X. cxp 5112    |` cres 5116    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934    - cmin 10266   abscabs 13974   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   distcds 15950   X_scprds 16106    ^s cpws 16107   Metcme 19732  ℂfldccnfld 19746   MetSpcmt 22123   TotBndctotbnd 33565   Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-topgen 16104  df-prds 16108  df-pws 16110  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-totbnd 33567  df-bnd 33578
This theorem is referenced by:  rrntotbnd  33635
  Copyright terms: Public domain W3C validator