Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1006 Structured version   Visualization version   Unicode version

Theorem bnj1006 31029
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1006.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1006.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1006.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1006.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
bnj1006.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj1006.6  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
bnj1006.7  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj1006.8  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj1006.9  |-  ( ch'  <->  [. p  /  n ]. ch )
bnj1006.10  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj1006.11  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj1006.12  |-  ( ch"  <->  [. G  / 
f ]. ch' )
bnj1006.13  |-  D  =  ( om  \  { (/)
} )
bnj1006.15  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj1006.16  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj1006.28  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch"  /\  i  e. 
om  /\  suc  i  e.  p ) )
Assertion
Ref Expression
bnj1006  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  pred ( y ,  A ,  R )  C_  ( G `  suc  i ) )
Distinct variable groups:    A, f,
i, m, n, y    D, f, n    i, G    R, f, i, m, n, y    f, X, n   
f, p, i, n
Allowed substitution hints:    ph( y, z, f, i, m, n, p)    ps( y, z, f, i, m, n, p)    ch( y, z, f, i, m, n, p)    th( y,
z, f, i, m, n, p)    ta( y,
z, f, i, m, n, p)    et( y,
z, f, i, m, n, p)    A( z, p)    C( y, z, f, i, m, n, p)    D( y, z, i, m, p)    R( z, p)    G( y, z, f, m, n, p)    X( y, z, i, m, p)    ph'( y, z, f, i, m, n, p)    ps'( y, z, f, i, m, n, p)    ch'( y, z, f, i, m, n, p)    ph"( y, z, f, i, m, n, p)   
ps"( y, z, f, i, m, n, p)    ch"( y, z, f, i, m, n, p)

Proof of Theorem bnj1006
StepHypRef Expression
1 bnj1006.6 . . . . 5  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
21simprbi 480 . . . 4  |-  ( et 
->  y  e.  (
f `  i )
)
32bnj708 30826 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
y  e.  ( f `
 i ) )
4 bnj1006.4 . . . . . . . 8  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
5 bnj253 30770 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  /\  y  e.  trCl ( X ,  A ,  R )  /\  z  e.  pred ( y ,  A ,  R ) ) )
65simp1bi 1076 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) )  -> 
( R  FrSe  A  /\  X  e.  A
) )
74, 6sylbi 207 . . . . . . 7  |-  ( th 
->  ( R  FrSe  A  /\  X  e.  A
) )
87bnj705 30823 . . . . . 6  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( R  FrSe  A  /\  X  e.  A
) )
9 bnj643 30819 . . . . . . 7  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch )
10 bnj1006.5 . . . . . . . . 9  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
11 3simpc 1060 . . . . . . . . 9  |-  ( ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n )  ->  ( n  =  suc  m  /\  p  =  suc  n ) )
1210, 11sylbi 207 . . . . . . . 8  |-  ( ta 
->  ( n  =  suc  m  /\  p  =  suc  n ) )
1312bnj707 30825 . . . . . . 7  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( n  =  suc  m  /\  p  =  suc  n ) )
14 3anass 1042 . . . . . . 7  |-  ( ( ch  /\  n  =  suc  m  /\  p  =  suc  n )  <->  ( ch  /\  ( n  =  suc  m  /\  p  =  suc  n ) ) )
159, 13, 14sylanbrc 698 . . . . . 6  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )
16 bnj1006.1 . . . . . . 7  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
17 bnj1006.2 . . . . . . 7  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
18 bnj1006.3 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
19 bnj1006.13 . . . . . . 7  |-  D  =  ( om  \  { (/)
} )
20 bnj1006.15 . . . . . . 7  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
21 biid 251 . . . . . . 7  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  <->  ( f  Fn  n  /\  ph  /\  ps ) )
22 biid 251 . . . . . . 7  |-  ( ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )  <->  ( n  e.  D  /\  p  =  suc  n  /\  m  e.  n )
)
2316, 17, 18, 19, 20, 21, 22bnj969 31016 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  ( ch  /\  n  =  suc  m  /\  p  =  suc  n ) )  ->  C  e.  _V )
248, 15, 23syl2anc 693 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  C  e.  _V )
2518bnj1235 30875 . . . . . 6  |-  ( ch 
->  f  Fn  n
)
2625bnj706 30824 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
f  Fn  n )
2710simp3bi 1078 . . . . . 6  |-  ( ta 
->  p  =  suc  n )
2827bnj707 30825 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  p  =  suc  n )
291simplbi 476 . . . . . 6  |-  ( et 
->  i  e.  n
)
3029bnj708 30826 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
i  e.  n )
3124, 26, 28, 30bnj951 30846 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n )
)
32 bnj1006.16 . . . . 5  |-  G  =  ( f  u.  { <. n ,  C >. } )
3332bnj945 30844 . . . 4  |-  ( ( C  e.  _V  /\  f  Fn  n  /\  p  =  suc  n  /\  i  e.  n )  ->  ( G `  i
)  =  ( f `
 i ) )
3431, 33syl 17 . . 3  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( G `  i
)  =  ( f `
 i ) )
353, 34eleqtrrd 2704 . 2  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
y  e.  ( G `
 i ) )
36 bnj1006.28 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch"  /\  i  e. 
om  /\  suc  i  e.  p ) )
3736anim1i 592 . . . 4  |-  ( ( ( th  /\  ch  /\ 
ta  /\  et )  /\  y  e.  ( G `  i )
)  ->  ( ( ch" 
/\  i  e.  om  /\ 
suc  i  e.  p
)  /\  y  e.  ( G `  i ) ) )
38 df-bnj17 30753 . . . 4  |-  ( ( ch" 
/\  i  e.  om  /\ 
suc  i  e.  p  /\  y  e.  ( G `  i )
)  <->  ( ( ch"  /\  i  e.  om  /\  suc  i  e.  p )  /\  y  e.  ( G `  i
) ) )
3937, 38sylibr 224 . . 3  |-  ( ( ( th  /\  ch  /\ 
ta  /\  et )  /\  y  e.  ( G `  i )
)  ->  ( ch"  /\  i  e.  om  /\  suc  i  e.  p  /\  y  e.  ( G `  i
) ) )
40 bnj1006.7 . . . 4  |-  ( ph'  <->  [. p  /  n ]. ph )
41 bnj1006.8 . . . 4  |-  ( ps'  <->  [. p  /  n ]. ps )
42 bnj1006.9 . . . 4  |-  ( ch'  <->  [. p  /  n ]. ch )
43 bnj1006.10 . . . 4  |-  ( ph"  <->  [. G  / 
f ]. ph' )
44 bnj1006.11 . . . 4  |-  ( ps"  <->  [. G  / 
f ]. ps' )
45 bnj1006.12 . . . 4  |-  ( ch"  <->  [. G  / 
f ]. ch' )
4616, 17, 18, 40, 41, 42, 43, 44, 45, 20, 32bnj999 31027 . . 3  |-  ( ( ch" 
/\  i  e.  om  /\ 
suc  i  e.  p  /\  y  e.  ( G `  i )
)  ->  pred ( y ,  A ,  R
)  C_  ( G `  suc  i ) )
4739, 46syl 17 . 2  |-  ( ( ( th  /\  ch  /\ 
ta  /\  et )  /\  y  e.  ( G `  i )
)  ->  pred ( y ,  A ,  R
)  C_  ( G `  suc  i ) )
4835, 47mpdan 702 1  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  pred ( y ,  A ,  R )  C_  ( G `  suc  i ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj1020  31033
  Copyright terms: Public domain W3C validator