Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcup Structured version   Visualization version   Unicode version

Theorem brcup 32046
Description: Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcup.1  |-  A  e. 
_V
brcup.2  |-  B  e. 
_V
brcup.3  |-  C  e. 
_V
Assertion
Ref Expression
brcup  |-  ( <. A ,  B >.Cup C  <-> 
C  =  ( A  u.  B ) )

Proof of Theorem brcup
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . 2  |-  <. A ,  B >.  e.  _V
2 brcup.3 . 2  |-  C  e. 
_V
3 df-cup 31976 . 2  |- Cup  =  ( ( ( _V  X.  _V )  X.  _V )  \  ran  ( ( _V 
(x)  _E  )  /_\  ( ( ( `' 1st  o.  _E  )  u.  ( `' 2nd  o.  _E  )
)  (x)  _V )
) )
4 brcup.1 . . . 4  |-  A  e. 
_V
5 brcup.2 . . . 4  |-  B  e. 
_V
64, 5opelvv 5166 . . 3  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
7 brxp 5147 . . 3  |-  ( <. A ,  B >. ( ( _V  X.  _V )  X.  _V ) C  <-> 
( <. A ,  B >.  e.  ( _V  X.  _V )  /\  C  e. 
_V ) )
86, 2, 7mpbir2an 955 . 2  |-  <. A ,  B >. ( ( _V 
X.  _V )  X.  _V ) C
9 epel 5032 . . . . . . 7  |-  ( x  _E  y  <->  x  e.  y )
10 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
1110, 1brcnv 5305 . . . . . . . 8  |-  ( y `' 1st <. A ,  B >.  <->  <. A ,  B >. 1st y )
124, 5br1steq 31670 . . . . . . . 8  |-  ( <. A ,  B >. 1st y  <->  y  =  A )
1311, 12bitri 264 . . . . . . 7  |-  ( y `' 1st <. A ,  B >.  <-> 
y  =  A )
149, 13anbi12ci 734 . . . . . 6  |-  ( ( x  _E  y  /\  y `' 1st <. A ,  B >. )  <->  ( y  =  A  /\  x  e.  y ) )
1514exbii 1774 . . . . 5  |-  ( E. y ( x  _E  y  /\  y `' 1st <. A ,  B >. )  <->  E. y ( y  =  A  /\  x  e.  y ) )
16 vex 3203 . . . . . 6  |-  x  e. 
_V
1716, 1brco 5292 . . . . 5  |-  ( x ( `' 1st  o.  _E  ) <. A ,  B >.  <->  E. y ( x  _E  y  /\  y `' 1st <. A ,  B >. ) )
184clel3 3341 . . . . 5  |-  ( x  e.  A  <->  E. y
( y  =  A  /\  x  e.  y ) )
1915, 17, 183bitr4i 292 . . . 4  |-  ( x ( `' 1st  o.  _E  ) <. A ,  B >.  <-> 
x  e.  A )
2010, 1brcnv 5305 . . . . . . . 8  |-  ( y `' 2nd <. A ,  B >.  <->  <. A ,  B >. 2nd y )
214, 5br2ndeq 31671 . . . . . . . 8  |-  ( <. A ,  B >. 2nd y  <->  y  =  B )
2220, 21bitri 264 . . . . . . 7  |-  ( y `' 2nd <. A ,  B >.  <-> 
y  =  B )
239, 22anbi12ci 734 . . . . . 6  |-  ( ( x  _E  y  /\  y `' 2nd <. A ,  B >. )  <->  ( y  =  B  /\  x  e.  y ) )
2423exbii 1774 . . . . 5  |-  ( E. y ( x  _E  y  /\  y `' 2nd <. A ,  B >. )  <->  E. y ( y  =  B  /\  x  e.  y ) )
2516, 1brco 5292 . . . . 5  |-  ( x ( `' 2nd  o.  _E  ) <. A ,  B >.  <->  E. y ( x  _E  y  /\  y `' 2nd <. A ,  B >. ) )
265clel3 3341 . . . . 5  |-  ( x  e.  B  <->  E. y
( y  =  B  /\  x  e.  y ) )
2724, 25, 263bitr4i 292 . . . 4  |-  ( x ( `' 2nd  o.  _E  ) <. A ,  B >.  <-> 
x  e.  B )
2819, 27orbi12i 543 . . 3  |-  ( ( x ( `' 1st  o.  _E  ) <. A ,  B >.  \/  x ( `' 2nd  o.  _E  ) <. A ,  B >. )  <-> 
( x  e.  A  \/  x  e.  B
) )
29 brun 4703 . . 3  |-  ( x ( ( `' 1st  o.  _E  )  u.  ( `' 2nd  o.  _E  )
) <. A ,  B >.  <-> 
( x ( `' 1st  o.  _E  ) <. A ,  B >.  \/  x ( `' 2nd  o.  _E  ) <. A ,  B >. ) )
30 elun 3753 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
3128, 29, 303bitr4ri 293 . 2  |-  ( x  e.  ( A  u.  B )  <->  x (
( `' 1st  o.  _E  )  u.  ( `' 2nd  o.  _E  )
) <. A ,  B >. )
321, 2, 3, 8, 31brtxpsd3 32003 1  |-  ( <. A ,  B >.Cup C  <-> 
C  =  ( A  u.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    u. cun 3572   <.cop 4183   class class class wbr 4653    _E cep 5028    X. cxp 5112   `'ccnv 5113    o. ccom 5118   1stc1st 7166   2ndc2nd 7167  Cupccup 31953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-cup 31976
This theorem is referenced by:  brsuccf  32048
  Copyright terms: Public domain W3C validator