Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brpprod Structured version   Visualization version   Unicode version

Theorem brpprod 31992
Description: Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 31991, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brpprod.1  |-  X  e. 
_V
brpprod.2  |-  Y  e. 
_V
brpprod.3  |-  Z  e. 
_V
brpprod.4  |-  W  e. 
_V
Assertion
Ref Expression
brpprod  |-  ( <. X ,  Y >.pprod ( A ,  B )
<. Z ,  W >.  <->  ( X A Z  /\  Y B W ) )

Proof of Theorem brpprod
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 31962 . . 3  |- pprod ( A ,  B )  =  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
21breqi 4659 . 2  |-  ( <. X ,  Y >.pprod ( A ,  B )
<. Z ,  W >.  <->  <. X ,  Y >. (
( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
<. Z ,  W >. )
3 opex 4932 . . 3  |-  <. X ,  Y >.  e.  _V
4 brpprod.3 . . 3  |-  Z  e. 
_V
5 brpprod.4 . . 3  |-  W  e. 
_V
63, 4, 5brtxp 31987 . 2  |-  ( <. X ,  Y >. ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
<. Z ,  W >.  <->  ( <. X ,  Y >. ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) Z  /\  <. X ,  Y >. ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) W ) )
73, 4brco 5292 . . . 4  |-  ( <. X ,  Y >. ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) Z  <->  E. x ( <. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  /\  x A Z ) )
8 brpprod.1 . . . . . . . . 9  |-  X  e. 
_V
9 brpprod.2 . . . . . . . . 9  |-  Y  e. 
_V
108, 9opelvv 5166 . . . . . . . 8  |-  <. X ,  Y >.  e.  ( _V 
X.  _V )
11 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
1211brres 5402 . . . . . . . 8  |-  ( <. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  <-> 
( <. X ,  Y >. 1st x  /\  <. X ,  Y >.  e.  ( _V  X.  _V )
) )
1310, 12mpbiran2 954 . . . . . . 7  |-  ( <. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  <->  <. X ,  Y >. 1st x )
148, 9br1steq 31670 . . . . . . 7  |-  ( <. X ,  Y >. 1st x  <->  x  =  X
)
1513, 14bitri 264 . . . . . 6  |-  ( <. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  <-> 
x  =  X )
1615anbi1i 731 . . . . 5  |-  ( (
<. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  /\  x A Z )  <->  ( x  =  X  /\  x A Z ) )
1716exbii 1774 . . . 4  |-  ( E. x ( <. X ,  Y >. ( 1st  |`  ( _V  X.  _V ) ) x  /\  x A Z )  <->  E. x
( x  =  X  /\  x A Z ) )
18 breq1 4656 . . . . 5  |-  ( x  =  X  ->  (
x A Z  <->  X A Z ) )
198, 18ceqsexv 3242 . . . 4  |-  ( E. x ( x  =  X  /\  x A Z )  <->  X A Z )
207, 17, 193bitri 286 . . 3  |-  ( <. X ,  Y >. ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) Z  <-> 
X A Z )
213, 5brco 5292 . . . 4  |-  ( <. X ,  Y >. ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) W  <->  E. y ( <. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  /\  y B W ) )
22 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
2322brres 5402 . . . . . . . 8  |-  ( <. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  <-> 
( <. X ,  Y >. 2nd y  /\  <. X ,  Y >.  e.  ( _V  X.  _V )
) )
2410, 23mpbiran2 954 . . . . . . 7  |-  ( <. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  <->  <. X ,  Y >. 2nd y )
258, 9br2ndeq 31671 . . . . . . 7  |-  ( <. X ,  Y >. 2nd y  <->  y  =  Y )
2624, 25bitri 264 . . . . . 6  |-  ( <. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  <-> 
y  =  Y )
2726anbi1i 731 . . . . 5  |-  ( (
<. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  /\  y B W )  <->  ( y  =  Y  /\  y B W ) )
2827exbii 1774 . . . 4  |-  ( E. y ( <. X ,  Y >. ( 2nd  |`  ( _V  X.  _V ) ) y  /\  y B W )  <->  E. y
( y  =  Y  /\  y B W ) )
29 breq1 4656 . . . . 5  |-  ( y  =  Y  ->  (
y B W  <->  Y B W ) )
309, 29ceqsexv 3242 . . . 4  |-  ( E. y ( y  =  Y  /\  y B W )  <->  Y B W )
3121, 28, 303bitri 286 . . 3  |-  ( <. X ,  Y >. ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) W  <-> 
Y B W )
3220, 31anbi12i 733 . 2  |-  ( (
<. X ,  Y >. ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) Z  /\  <. X ,  Y >. ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) W )  <->  ( X A Z  /\  Y B W ) )
332, 6, 323bitri 286 1  |-  ( <. X ,  Y >.pprod ( A ,  B )
<. Z ,  W >.  <->  ( X A Z  /\  Y B W ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653    X. cxp 5112    |` cres 5116    o. ccom 5118   1stc1st 7166   2ndc2nd 7167    (x) ctxp 31937  pprodcpprod 31938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-pprod 31962
This theorem is referenced by:  brpprod3a  31993
  Copyright terms: Public domain W3C validator