Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrestrict Structured version   Visualization version   Unicode version

Theorem brrestrict 32056
Description: Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brrestrict.1  |-  A  e. 
_V
brrestrict.2  |-  B  e. 
_V
brrestrict.3  |-  C  e. 
_V
Assertion
Ref Expression
brrestrict  |-  ( <. A ,  B >.Restrict C  <->  C  =  ( A  |`  B ) )

Proof of Theorem brrestrict
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4932 . . . . 5  |-  <. A ,  B >.  e.  _V
2 brrestrict.3 . . . . 5  |-  C  e. 
_V
31, 2brco 5292 . . . 4  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <->  E. x ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C ) )
41brtxp2 31988 . . . . . . 7  |-  ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  <->  E. a E. b
( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b ) )
5 3anrot 1043 . . . . . . . . 9  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <-> 
( <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o. 
1st ) ) ) b  /\  x  = 
<. a ,  b >.
) )
6 brrestrict.1 . . . . . . . . . . 11  |-  A  e. 
_V
7 brrestrict.2 . . . . . . . . . . 11  |-  B  e. 
_V
86, 7br1steq 31670 . . . . . . . . . 10  |-  ( <. A ,  B >. 1st a  <->  a  =  A )
9 vex 3203 . . . . . . . . . . . 12  |-  b  e. 
_V
101, 9brco 5292 . . . . . . . . . . 11  |-  ( <. A ,  B >. (Cart 
o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  <->  E. x
( <. A ,  B >. ( 2nd  (x)  (Range  o. 
1st ) ) x  /\  xCart b ) )
111brtxp2 31988 . . . . . . . . . . . . . . 15  |-  ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  <->  E. a E. b ( x  = 
<. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o. 
1st ) b ) )
12 3anrot 1043 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  ( <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b  /\  x  =  <. a ,  b >.
) )
136, 7br2ndeq 31671 . . . . . . . . . . . . . . . . . 18  |-  ( <. A ,  B >. 2nd a  <->  a  =  B )
141, 9brco 5292 . . . . . . . . . . . . . . . . . . 19  |-  ( <. A ,  B >. (Range 
o.  1st ) b  <->  E. x
( <. A ,  B >. 1st x  /\  xRange b ) )
156, 7br1steq 31670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. A ,  B >. 1st x  <->  x  =  A
)
1615anbi1i 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
<. A ,  B >. 1st x  /\  xRange b
)  <->  ( x  =  A  /\  xRange b
) )
1716exbii 1774 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x ( <. A ,  B >. 1st x  /\  xRange b )  <->  E. x
( x  =  A  /\  xRange b ) )
18 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  A  ->  (
xRange b  <->  ARange b
) )
196, 18ceqsexv 3242 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. x ( x  =  A  /\  xRange b
)  <->  ARange b )
2017, 19bitri 264 . . . . . . . . . . . . . . . . . . 19  |-  ( E. x ( <. A ,  B >. 1st x  /\  xRange b )  <->  ARange b
)
216, 9brrange 32041 . . . . . . . . . . . . . . . . . . 19  |-  ( ARange b  <->  b  =  ran  A )
2214, 20, 213bitri 286 . . . . . . . . . . . . . . . . . 18  |-  ( <. A ,  B >. (Range 
o.  1st ) b  <->  b  =  ran  A )
23 biid 251 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  <. a ,  b
>. 
<->  x  =  <. a ,  b >. )
2413, 22, 233anbi123i 1251 . . . . . . . . . . . . . . . . 17  |-  ( (
<. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st ) b  /\  x  =  <. a ,  b
>. )  <->  ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
2512, 24bitri 264 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
26252exbii 1775 . . . . . . . . . . . . . . 15  |-  ( E. a E. b ( x  =  <. a ,  b >.  /\  <. A ,  B >. 2nd a  /\  <. A ,  B >. (Range  o.  1st )
b )  <->  E. a E. b ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b
>. ) )
276rnex 7100 . . . . . . . . . . . . . . . 16  |-  ran  A  e.  _V
28 opeq1 4402 . . . . . . . . . . . . . . . . 17  |-  ( a  =  B  ->  <. a ,  b >.  =  <. B ,  b >. )
2928eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( a  =  B  ->  (
x  =  <. a ,  b >.  <->  x  =  <. B ,  b >.
) )
30 opeq2 4403 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ran  A  ->  <. B ,  b >.  =  <. B ,  ran  A
>. )
3130eqeq2d 2632 . . . . . . . . . . . . . . . 16  |-  ( b  =  ran  A  -> 
( x  =  <. B ,  b >.  <->  x  =  <. B ,  ran  A >. ) )
327, 27, 29, 31ceqsex2v 3245 . . . . . . . . . . . . . . 15  |-  ( E. a E. b ( a  =  B  /\  b  =  ran  A  /\  x  =  <. a ,  b >. )  <->  x  =  <. B ,  ran  A >. )
3311, 26, 323bitri 286 . . . . . . . . . . . . . 14  |-  ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  <->  x  =  <. B ,  ran  A >. )
3433anbi1i 731 . . . . . . . . . . . . 13  |-  ( (
<. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b )  <->  ( x  =  <. B ,  ran  A
>.  /\  xCart b ) )
3534exbii 1774 . . . . . . . . . . . 12  |-  ( E. x ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b
)  <->  E. x ( x  =  <. B ,  ran  A
>.  /\  xCart b ) )
36 opex 4932 . . . . . . . . . . . . 13  |-  <. B ,  ran  A >.  e.  _V
37 breq1 4656 . . . . . . . . . . . . 13  |-  ( x  =  <. B ,  ran  A
>.  ->  ( xCart b  <->  <. B ,  ran  A >.Cart b ) )
3836, 37ceqsexv 3242 . . . . . . . . . . . 12  |-  ( E. x ( x  = 
<. B ,  ran  A >.  /\  xCart b )  <->  <. B ,  ran  A >.Cart b )
3935, 38bitri 264 . . . . . . . . . . 11  |-  ( E. x ( <. A ,  B >. ( 2nd  (x)  (Range  o.  1st ) ) x  /\  xCart b
)  <->  <. B ,  ran  A
>.Cart b )
407, 27, 9brcart 32039 . . . . . . . . . . 11  |-  ( <. B ,  ran  A >.Cart b  <-> 
b  =  ( B  X.  ran  A ) )
4110, 39, 403bitri 286 . . . . . . . . . 10  |-  ( <. A ,  B >. (Cart 
o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  <->  b  =  ( B  X.  ran  A
) )
428, 41, 233anbi123i 1251 . . . . . . . . 9  |-  ( (
<. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) b  /\  x  =  <. a ,  b >. )  <->  ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. ) )
435, 42bitri 264 . . . . . . . 8  |-  ( ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <-> 
( a  =  A  /\  b  =  ( B  X.  ran  A
)  /\  x  =  <. a ,  b >.
) )
44432exbii 1775 . . . . . . 7  |-  ( E. a E. b ( x  =  <. a ,  b >.  /\  <. A ,  B >. 1st a  /\  <. A ,  B >. (Cart  o.  ( 2nd  (x)  (Range  o.  1st )
) ) b )  <->  E. a E. b ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. ) )
457, 27xpex 6962 . . . . . . . 8  |-  ( B  X.  ran  A )  e.  _V
46 opeq1 4402 . . . . . . . . 9  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
4746eqeq2d 2632 . . . . . . . 8  |-  ( a  =  A  ->  (
x  =  <. a ,  b >.  <->  x  =  <. A ,  b >.
) )
48 opeq2 4403 . . . . . . . . 9  |-  ( b  =  ( B  X.  ran  A )  ->  <. A , 
b >.  =  <. A , 
( B  X.  ran  A ) >. )
4948eqeq2d 2632 . . . . . . . 8  |-  ( b  =  ( B  X.  ran  A )  ->  (
x  =  <. A , 
b >. 
<->  x  =  <. A , 
( B  X.  ran  A ) >. ) )
506, 45, 47, 49ceqsex2v 3245 . . . . . . 7  |-  ( E. a E. b ( a  =  A  /\  b  =  ( B  X.  ran  A )  /\  x  =  <. a ,  b >. )  <->  x  =  <. A ,  ( B  X.  ran  A )
>. )
514, 44, 503bitri 286 . . . . . 6  |-  ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  <->  x  =  <. A ,  ( B  X.  ran  A ) >. )
5251anbi1i 731 . . . . 5  |-  ( (
<. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C
)  <->  ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C ) )
5352exbii 1774 . . . 4  |-  ( E. x ( <. A ,  B >. ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) x  /\  xCap C )  <->  E. x
( x  =  <. A ,  ( B  X.  ran  A ) >.  /\  xCap C ) )
543, 53bitri 264 . . 3  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <->  E. x ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C ) )
55 opex 4932 . . . 4  |-  <. A , 
( B  X.  ran  A ) >.  e.  _V
56 breq1 4656 . . . 4  |-  ( x  =  <. A ,  ( B  X.  ran  A
) >.  ->  ( xCap C 
<-> 
<. A ,  ( B  X.  ran  A )
>.Cap C ) )
5755, 56ceqsexv 3242 . . 3  |-  ( E. x ( x  = 
<. A ,  ( B  X.  ran  A )
>.  /\  xCap C )  <->  <. A ,  ( B  X.  ran  A )
>.Cap C )
586, 45, 2brcap 32047 . . 3  |-  ( <. A ,  ( B  X.  ran  A ) >.Cap C 
<->  C  =  ( A  i^i  ( B  X.  ran  A ) ) )
5954, 57, 583bitri 286 . 2  |-  ( <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C  <-> 
C  =  ( A  i^i  ( B  X.  ran  A ) ) )
60 df-restrict 31978 . . 3  |- Restrict  =  (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) )
6160breqi 4659 . 2  |-  ( <. A ,  B >.Restrict C  <->  <. A ,  B >. (Cap 
o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) ) C )
62 dfres3 5403 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  ran  A ) )
6362eqeq2i 2634 . 2  |-  ( C  =  ( A  |`  B )  <->  C  =  ( A  i^i  ( B  X.  ran  A ) ) )
6459, 61, 633bitr4i 292 1  |-  ( <. A ,  B >.Restrict C  <->  C  =  ( A  |`  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    i^i cin 3573   <.cop 4183   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   1stc1st 7166   2ndc2nd 7167    (x) ctxp 31937  Cartccart 31948  Rangecrange 31951  Capccap 31954  Restrictcrestrict 31958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-pprod 31962  df-image 31971  df-cart 31972  df-range 31975  df-cap 31977  df-restrict 31978
This theorem is referenced by:  dfrecs2  32057
  Copyright terms: Public domain W3C validator