| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsset | Structured version Visualization version Unicode version | ||
| Description: For sets, the |
| Ref | Expression |
|---|---|
| brsset.1 |
|
| Ref | Expression |
|---|---|
| brsset |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsset 31995 |
. . 3
| |
| 2 | 1 | brrelexi 5158 |
. 2
|
| 3 | brsset.1 |
. . 3
| |
| 4 | 3 | ssex 4802 |
. 2
|
| 5 | breq1 4656 |
. . 3
| |
| 6 | sseq1 3626 |
. . 3
| |
| 7 | opex 4932 |
. . . . . . 7
| |
| 8 | 7 | elrn 5366 |
. . . . . 6
|
| 9 | vex 3203 |
. . . . . . . . 9
| |
| 10 | vex 3203 |
. . . . . . . . 9
| |
| 11 | 9, 10, 3 | brtxp 31987 |
. . . . . . . 8
|
| 12 | epel 5032 |
. . . . . . . . 9
| |
| 13 | brv 4941 |
. . . . . . . . . . 11
| |
| 14 | brdif 4705 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | mpbiran 953 |
. . . . . . . . . 10
|
| 16 | 3 | epelc 5031 |
. . . . . . . . . 10
|
| 17 | 15, 16 | xchbinx 324 |
. . . . . . . . 9
|
| 18 | 12, 17 | anbi12i 733 |
. . . . . . . 8
|
| 19 | 11, 18 | bitri 264 |
. . . . . . 7
|
| 20 | 19 | exbii 1774 |
. . . . . 6
|
| 21 | exanali 1786 |
. . . . . 6
| |
| 22 | 8, 20, 21 | 3bitrri 287 |
. . . . 5
|
| 23 | 22 | con1bii 346 |
. . . 4
|
| 24 | df-br 4654 |
. . . . 5
| |
| 25 | df-sset 31963 |
. . . . . . 7
| |
| 26 | 25 | eleq2i 2693 |
. . . . . 6
|
| 27 | 10, 3 | opelvv 5166 |
. . . . . . 7
|
| 28 | eldif 3584 |
. . . . . . 7
| |
| 29 | 27, 28 | mpbiran 953 |
. . . . . 6
|
| 30 | 26, 29 | bitri 264 |
. . . . 5
|
| 31 | 24, 30 | bitri 264 |
. . . 4
|
| 32 | dfss2 3591 |
. . . 4
| |
| 33 | 23, 31, 32 | 3bitr4i 292 |
. . 3
|
| 34 | 5, 6, 33 | vtoclbg 3267 |
. 2
|
| 35 | 2, 4, 34 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-eprel 5029 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-sset 31963 |
| This theorem is referenced by: idsset 31997 dfon3 31999 imagesset 32060 |
| Copyright terms: Public domain | W3C validator |