MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomnumr Structured version   Visualization version   Unicode version

Theorem wdomnumr 8887
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdomnumr  |-  ( B  e.  dom  card  ->  ( A  ~<_*  B  <->  A  ~<_  B )
)

Proof of Theorem wdomnumr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brwdom 8472 . . 3  |-  ( B  e.  dom  card  ->  ( A  ~<_*  B  <->  ( A  =  (/)  \/  E. x  x : B -onto-> A ) ) )
2 0domg 8087 . . . . 5  |-  ( B  e.  dom  card  ->  (/)  ~<_  B )
3 breq1 4656 . . . . 5  |-  ( A  =  (/)  ->  ( A  ~<_  B  <->  (/)  ~<_  B ) )
42, 3syl5ibrcom 237 . . . 4  |-  ( B  e.  dom  card  ->  ( A  =  (/)  ->  A  ~<_  B ) )
5 fodomnum 8880 . . . . 5  |-  ( B  e.  dom  card  ->  ( x : B -onto-> A  ->  A  ~<_  B ) )
65exlimdv 1861 . . . 4  |-  ( B  e.  dom  card  ->  ( E. x  x : B -onto-> A  ->  A  ~<_  B ) )
74, 6jaod 395 . . 3  |-  ( B  e.  dom  card  ->  ( ( A  =  (/)  \/ 
E. x  x : B -onto-> A )  ->  A  ~<_  B ) )
81, 7sylbid 230 . 2  |-  ( B  e.  dom  card  ->  ( A  ~<_*  B  ->  A  ~<_  B ) )
9 domwdom 8479 . 2  |-  ( A  ~<_  B  ->  A  ~<_*  B )
108, 9impbid1 215 1  |-  ( B  e.  dom  card  ->  ( A  ~<_*  B  <->  A  ~<_  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483   E.wex 1704    e. wcel 1990   (/)c0 3915   class class class wbr 4653   dom cdm 5114   -onto->wfo 5886    ~<_ cdom 7953    ~<_* cwdom 8462   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-wdom 8464  df-card 8765  df-acn 8768
This theorem is referenced by:  wdomac  9349  ttac  37603  isnumbasgrplem2  37674
  Copyright terms: Public domain W3C validator