| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > c0mgm | Structured version Visualization version Unicode version | ||
| Description: The constant mapping to zero is a magma homomorphism into a monoid. Remark: Instead of the assumption that T is a monoid, it would be sufficient that T is a magma with a right or left identity. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| c0mhm.b |
|
| c0mhm.0 |
|
| c0mhm.h |
|
| Ref | Expression |
|---|---|
| c0mgm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 17300 |
. . 3
| |
| 2 | 1 | anim2i 593 |
. 2
|
| 3 | eqid 2622 |
. . . . . . 7
| |
| 4 | c0mhm.0 |
. . . . . . 7
| |
| 5 | 3, 4 | mndidcl 17308 |
. . . . . 6
|
| 6 | 5 | adantl 482 |
. . . . 5
|
| 7 | 6 | adantr 481 |
. . . 4
|
| 8 | c0mhm.h |
. . . 4
| |
| 9 | 7, 8 | fmptd 6385 |
. . 3
|
| 10 | 5 | ancli 574 |
. . . . . . . 8
|
| 11 | 10 | adantl 482 |
. . . . . . 7
|
| 12 | eqid 2622 |
. . . . . . . 8
| |
| 13 | 3, 12, 4 | mndlid 17311 |
. . . . . . 7
|
| 14 | 11, 13 | syl 17 |
. . . . . 6
|
| 15 | 14 | adantr 481 |
. . . . 5
|
| 16 | 8 | a1i 11 |
. . . . . . 7
|
| 17 | eqidd 2623 |
. . . . . . 7
| |
| 18 | simprl 794 |
. . . . . . 7
| |
| 19 | 6 | adantr 481 |
. . . . . . 7
|
| 20 | 16, 17, 18, 19 | fvmptd 6288 |
. . . . . 6
|
| 21 | eqidd 2623 |
. . . . . . 7
| |
| 22 | simprr 796 |
. . . . . . 7
| |
| 23 | 16, 21, 22, 19 | fvmptd 6288 |
. . . . . 6
|
| 24 | 20, 23 | oveq12d 6668 |
. . . . 5
|
| 25 | eqidd 2623 |
. . . . . 6
| |
| 26 | c0mhm.b |
. . . . . . . . 9
| |
| 27 | eqid 2622 |
. . . . . . . . 9
| |
| 28 | 26, 27 | mgmcl 17245 |
. . . . . . . 8
|
| 29 | 28 | 3expb 1266 |
. . . . . . 7
|
| 30 | 29 | adantlr 751 |
. . . . . 6
|
| 31 | 16, 25, 30, 19 | fvmptd 6288 |
. . . . 5
|
| 32 | 15, 24, 31 | 3eqtr4rd 2667 |
. . . 4
|
| 33 | 32 | ralrimivva 2971 |
. . 3
|
| 34 | 9, 33 | jca 554 |
. 2
|
| 35 | 26, 3, 27, 12 | ismgmhm 41783 |
. 2
|
| 36 | 2, 34, 35 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mgmhm 41779 |
| This theorem is referenced by: c0rnghm 41913 |
| Copyright terms: Public domain | W3C validator |