Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0mhm Structured version   Visualization version   Unicode version

Theorem c0mhm 41910
Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b  |-  B  =  ( Base `  S
)
c0mhm.0  |-  .0.  =  ( 0g `  T )
c0mhm.h  |-  H  =  ( x  e.  B  |->  .0.  )
Assertion
Ref Expression
c0mhm  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  H  e.  ( S MndHom  T ) )
Distinct variable groups:    x, B    x, S    x, T    x,  .0.
Allowed substitution hint:    H( x)

Proof of Theorem c0mhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
2 c0mhm.0 . . . . . . . 8  |-  .0.  =  ( 0g `  T )
31, 2mndidcl 17308 . . . . . . 7  |-  ( T  e.  Mnd  ->  .0.  e.  ( Base `  T
) )
43adantl 482 . . . . . 6  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  .0.  e.  ( Base `  T ) )
54adantr 481 . . . . 5  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  x  e.  B
)  ->  .0.  e.  ( Base `  T )
)
6 c0mhm.h . . . . 5  |-  H  =  ( x  e.  B  |->  .0.  )
75, 6fmptd 6385 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  H : B --> ( Base `  T ) )
83ancli 574 . . . . . . . . 9  |-  ( T  e.  Mnd  ->  ( T  e.  Mnd  /\  .0.  e.  ( Base `  T
) ) )
98adantl 482 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( T  e.  Mnd  /\  .0.  e.  ( Base `  T ) ) )
10 eqid 2622 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
111, 10, 2mndlid 17311 . . . . . . . 8  |-  ( ( T  e.  Mnd  /\  .0.  e.  ( Base `  T
) )  ->  (  .0.  ( +g  `  T
)  .0.  )  =  .0.  )
129, 11syl 17 . . . . . . 7  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  (  .0.  ( +g  `  T )  .0.  )  =  .0.  )
1312adantr 481 . . . . . 6  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (  .0.  ( +g  `  T
)  .0.  )  =  .0.  )
146a1i 11 . . . . . . . 8  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  H  =  ( x  e.  B  |->  .0.  ) )
15 eqidd 2623 . . . . . . . 8  |-  ( ( ( ( S  e. 
Mnd  /\  T  e.  Mnd )  /\  (
a  e.  B  /\  b  e.  B )
)  /\  x  =  a )  ->  .0.  =  .0.  )
16 simprl 794 . . . . . . . 8  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  a  e.  B )
174adantr 481 . . . . . . . 8  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  .0.  e.  ( Base `  T
) )
1814, 15, 16, 17fvmptd 6288 . . . . . . 7  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( H `  a )  =  .0.  )
19 eqidd 2623 . . . . . . . 8  |-  ( ( ( ( S  e. 
Mnd  /\  T  e.  Mnd )  /\  (
a  e.  B  /\  b  e.  B )
)  /\  x  =  b )  ->  .0.  =  .0.  )
20 simprr 796 . . . . . . . 8  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  b  e.  B )
2114, 19, 20, 17fvmptd 6288 . . . . . . 7  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( H `  b )  =  .0.  )
2218, 21oveq12d 6668 . . . . . 6  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( H `  a
) ( +g  `  T
) ( H `  b ) )  =  (  .0.  ( +g  `  T )  .0.  )
)
23 eqidd 2623 . . . . . . 7  |-  ( ( ( ( S  e. 
Mnd  /\  T  e.  Mnd )  /\  (
a  e.  B  /\  b  e.  B )
)  /\  x  =  ( a ( +g  `  S ) b ) )  ->  .0.  =  .0.  )
24 c0mhm.b . . . . . . . . . 10  |-  B  =  ( Base `  S
)
25 eqid 2622 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
2624, 25mndcl 17301 . . . . . . . . 9  |-  ( ( S  e.  Mnd  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  S ) b )  e.  B )
27263expb 1266 . . . . . . . 8  |-  ( ( S  e.  Mnd  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  S
) b )  e.  B )
2827adantlr 751 . . . . . . 7  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  S
) b )  e.  B )
2914, 23, 28, 17fvmptd 6288 . . . . . 6  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( H `  ( a
( +g  `  S ) b ) )  =  .0.  )
3013, 22, 293eqtr4rd 2667 . . . . 5  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( H `  ( a
( +g  `  S ) b ) )  =  ( ( H `  a ) ( +g  `  T ) ( H `
 b ) ) )
3130ralrimivva 2971 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  A. a  e.  B  A. b  e.  B  ( H `  ( a ( +g  `  S
) b ) )  =  ( ( H `
 a ) ( +g  `  T ) ( H `  b
) ) )
326a1i 11 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  H  =  ( x  e.  B  |->  .0.  )
)
33 eqidd 2623 . . . . 5  |-  ( ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  x  =  ( 0g `  S ) )  ->  .0.  =  .0.  )
34 eqid 2622 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
3524, 34mndidcl 17308 . . . . . 6  |-  ( S  e.  Mnd  ->  ( 0g `  S )  e.  B )
3635adantr 481 . . . . 5  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( 0g `  S
)  e.  B )
3732, 33, 36, 4fvmptd 6288 . . . 4  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( H `  ( 0g `  S ) )  =  .0.  )
387, 31, 373jca 1242 . . 3  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( H : B --> ( Base `  T )  /\  A. a  e.  B  A. b  e.  B  ( H `  ( a ( +g  `  S
) b ) )  =  ( ( H `
 a ) ( +g  `  T ) ( H `  b
) )  /\  ( H `  ( 0g `  S ) )  =  .0.  ) )
3938ancli 574 . 2  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( ( S  e. 
Mnd  /\  T  e.  Mnd )  /\  ( H : B --> ( Base `  T )  /\  A. a  e.  B  A. b  e.  B  ( H `  ( a
( +g  `  S ) b ) )  =  ( ( H `  a ) ( +g  `  T ) ( H `
 b ) )  /\  ( H `  ( 0g `  S ) )  =  .0.  )
) )
4024, 1, 25, 10, 34, 2ismhm 17337 . 2  |-  ( H  e.  ( S MndHom  T
)  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( H : B --> ( Base `  T )  /\  A. a  e.  B  A. b  e.  B  ( H `  ( a
( +g  `  S ) b ) )  =  ( ( H `  a ) ( +g  `  T ) ( H `
 b ) )  /\  ( H `  ( 0g `  S ) )  =  .0.  )
) )
4139, 40sylibr 224 1  |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  H  e.  ( S MndHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   MndHom cmhm 17333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335
This theorem is referenced by:  c0ghm  41911  c0rhm  41912
  Copyright terms: Public domain W3C validator