MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdompwdom Structured version   Visualization version   Unicode version

Theorem wdompwdom 8483
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
wdompwdom  |-  ( X  ~<_*  Y  ->  ~P X  ~<_  ~P Y )

Proof of Theorem wdompwdom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relwdom 8471 . . . . . 6  |-  Rel  ~<_*
21brrelex2i 5159 . . . . 5  |-  ( X  ~<_*  Y  ->  Y  e.  _V )
3 pwexg 4850 . . . . 5  |-  ( Y  e.  _V  ->  ~P Y  e.  _V )
42, 3syl 17 . . . 4  |-  ( X  ~<_*  Y  ->  ~P Y  e. 
_V )
5 0ss 3972 . . . . 5  |-  (/)  C_  Y
6 sspwb 4917 . . . . 5  |-  ( (/)  C_  Y  <->  ~P (/)  C_  ~P Y
)
75, 6mpbi 220 . . . 4  |-  ~P (/)  C_  ~P Y
8 ssdomg 8001 . . . 4  |-  ( ~P Y  e.  _V  ->  ( ~P (/)  C_  ~P Y  ->  ~P (/)  ~<_  ~P Y
) )
94, 7, 8mpisyl 21 . . 3  |-  ( X  ~<_*  Y  ->  ~P (/)  ~<_  ~P Y
)
10 pweq 4161 . . . 4  |-  ( X  =  (/)  ->  ~P X  =  ~P (/) )
1110breq1d 4663 . . 3  |-  ( X  =  (/)  ->  ( ~P X  ~<_  ~P Y  <->  ~P (/)  ~<_  ~P Y
) )
129, 11syl5ibr 236 . 2  |-  ( X  =  (/)  ->  ( X  ~<_*  Y  ->  ~P X  ~<_  ~P Y ) )
13 brwdomn0 8474 . . 3  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  <->  E. z  z : Y -onto-> X ) )
14 vex 3203 . . . . 5  |-  z  e. 
_V
15 fopwdom 8068 . . . . 5  |-  ( ( z  e.  _V  /\  z : Y -onto-> X )  ->  ~P X  ~<_  ~P Y )
1614, 15mpan 706 . . . 4  |-  ( z : Y -onto-> X  ->  ~P X  ~<_  ~P Y
)
1716exlimiv 1858 . . 3  |-  ( E. z  z : Y -onto-> X  ->  ~P X  ~<_  ~P Y )
1813, 17syl6bi 243 . 2  |-  ( X  =/=  (/)  ->  ( X  ~<_*  Y  ->  ~P X  ~<_  ~P Y ) )
1912, 18pm2.61ine 2877 1  |-  ( X  ~<_*  Y  ->  ~P X  ~<_  ~P Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   -onto->wfo 5886    ~<_ cdom 7953    ~<_* cwdom 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-dom 7957  df-wdom 8464
This theorem is referenced by:  isfin32i  9187  hsmexlem1  9248  hsmexlem3  9250  gchhar  9501
  Copyright terms: Public domain W3C validator