Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindf Structured version   Visualization version   Unicode version

Theorem nnindf 29565
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nnindf.x  |-  F/ y
ph
nnindf.1  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
nnindf.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nnindf.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nnindf.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nnindf.5  |-  ps
nnindf.6  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
Assertion
Ref Expression
nnindf  |-  ( A  e.  NN  ->  ta )
Distinct variable groups:    x, y    x, A    ch, x    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nnindf
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 1nn 11031 . . . . . 6  |-  1  e.  NN
2 nnindf.5 . . . . . 6  |-  ps
3 nnindf.1 . . . . . . 7  |-  ( x  =  1  ->  ( ph 
<->  ps ) )
43elrab 3363 . . . . . 6  |-  ( 1  e.  { x  e.  NN  |  ph }  <->  ( 1  e.  NN  /\  ps ) )
51, 2, 4mpbir2an 955 . . . . 5  |-  1  e.  { x  e.  NN  |  ph }
6 elrabi 3359 . . . . . . . 8  |-  ( y  e.  { x  e.  NN  |  ph }  ->  y  e.  NN )
7 peano2nn 11032 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
87a1d 25 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
y  e.  NN  ->  ( y  +  1 )  e.  NN ) )
9 nnindf.6 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
108, 9anim12d 586 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( y  e.  NN  /\ 
ch )  ->  (
( y  +  1 )  e.  NN  /\  th ) ) )
11 nnindf.2 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1211elrab 3363 . . . . . . . . 9  |-  ( y  e.  { x  e.  NN  |  ph }  <->  ( y  e.  NN  /\  ch ) )
13 nnindf.3 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
1413elrab 3363 . . . . . . . . 9  |-  ( ( y  +  1 )  e.  { x  e.  NN  |  ph }  <->  ( ( y  +  1 )  e.  NN  /\  th ) )
1510, 12, 143imtr4g 285 . . . . . . . 8  |-  ( y  e.  NN  ->  (
y  e.  { x  e.  NN  |  ph }  ->  ( y  +  1 )  e.  { x  e.  NN  |  ph }
) )
166, 15mpcom 38 . . . . . . 7  |-  ( y  e.  { x  e.  NN  |  ph }  ->  ( y  +  1 )  e.  { x  e.  NN  |  ph }
)
1716rgen 2922 . . . . . 6  |-  A. y  e.  { x  e.  NN  |  ph }  ( y  +  1 )  e. 
{ x  e.  NN  |  ph }
18 nnindf.x . . . . . . . 8  |-  F/ y
ph
19 nfcv 2764 . . . . . . . 8  |-  F/_ y NN
2018, 19nfrab 3123 . . . . . . 7  |-  F/_ y { x  e.  NN  |  ph }
21 nfcv 2764 . . . . . . 7  |-  F/_ w { x  e.  NN  |  ph }
22 nfv 1843 . . . . . . 7  |-  F/ w
( y  +  1 )  e.  { x  e.  NN  |  ph }
2320nfel2 2781 . . . . . . 7  |-  F/ y ( w  +  1 )  e.  { x  e.  NN  |  ph }
24 oveq1 6657 . . . . . . . 8  |-  ( y  =  w  ->  (
y  +  1 )  =  ( w  + 
1 ) )
2524eleq1d 2686 . . . . . . 7  |-  ( y  =  w  ->  (
( y  +  1 )  e.  { x  e.  NN  |  ph }  <->  ( w  +  1 )  e.  { x  e.  NN  |  ph }
) )
2620, 21, 22, 23, 25cbvralf 3165 . . . . . 6  |-  ( A. y  e.  { x  e.  NN  |  ph } 
( y  +  1 )  e.  { x  e.  NN  |  ph }  <->  A. w  e.  { x  e.  NN  |  ph } 
( w  +  1 )  e.  { x  e.  NN  |  ph }
)
2717, 26mpbi 220 . . . . 5  |-  A. w  e.  { x  e.  NN  |  ph }  ( w  +  1 )  e. 
{ x  e.  NN  |  ph }
28 peano5nni 11023 . . . . 5  |-  ( ( 1  e.  { x  e.  NN  |  ph }  /\  A. w  e.  {
x  e.  NN  |  ph }  ( w  + 
1 )  e.  {
x  e.  NN  |  ph } )  ->  NN  C_ 
{ x  e.  NN  |  ph } )
295, 27, 28mp2an 708 . . . 4  |-  NN  C_  { x  e.  NN  |  ph }
3029sseli 3599 . . 3  |-  ( A  e.  NN  ->  A  e.  { x  e.  NN  |  ph } )
31 nnindf.4 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
3231elrab 3363 . . 3  |-  ( A  e.  { x  e.  NN  |  ph }  <->  ( A  e.  NN  /\  ta ) )
3330, 32sylib 208 . 2  |-  ( A  e.  NN  ->  ( A  e.  NN  /\  ta ) )
3433simprd 479 1  |-  ( A  e.  NN  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574  (class class class)co 6650   1c1 9937    + caddc 9939   NNcn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021
This theorem is referenced by:  nn0min  29567
  Copyright terms: Public domain W3C validator