Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc2 Structured version   Visualization version   Unicode version

Theorem cdlemc2 35479
Description: Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
cdlemc2.l  |-  .<_  =  ( le `  K )
cdlemc2.j  |-  .\/  =  ( join `  K )
cdlemc2.m  |-  ./\  =  ( meet `  K )
cdlemc2.a  |-  A  =  ( Atoms `  K )
cdlemc2.h  |-  H  =  ( LHyp `  K
)
cdlemc2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemc2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )

Proof of Theorem cdlemc2
StepHypRef Expression
1 simp1l 1085 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  HL )
2 simp3ll 1132 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  A )
3 simp3rl 1134 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  A )
4 cdlemc2.l . . . . . 6  |-  .<_  =  ( le `  K )
5 cdlemc2.j . . . . . 6  |-  .\/  =  ( join `  K )
6 cdlemc2.a . . . . . 6  |-  A  =  ( Atoms `  K )
74, 5, 6hlatlej2 34662 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
81, 2, 3, 7syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  Q
) )
9 simp1 1061 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 6atbase 34576 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
123, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  ( Base `  K
) )
13 simp3l 1089 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 cdlemc2.m . . . . . 6  |-  ./\  =  ( meet `  K )
15 cdlemc2.h . . . . . 6  |-  H  =  ( LHyp `  K
)
1610, 4, 5, 14, 6, 15cdlemc1 35478 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  (
Base `  K )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( P 
.\/  Q ) )
179, 12, 13, 16syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
188, 17breqtrrd 4681 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
19 simp2 1062 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  F  e.  T )
20 hllat 34650 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
211, 20syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  Lat )
2210, 6atbase 34576 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
232, 22syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  ( Base `  K
) )
2410, 5latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2521, 23, 12, 24syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
26 simp1r 1086 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  H )
2710, 15lhpbase 35284 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  ( Base `  K
) )
2910, 14latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
3021, 25, 28, 29syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )
3110, 5latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
3221, 23, 30, 31syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
33 cdlemc2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3410, 4, 15, 33ltrnle 35415 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)  e.  ( Base `  K ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) )  <-> 
( F `  Q
)  .<_  ( F `  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) ) ) )
359, 19, 12, 32, 34syl112anc 1330 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  <->  ( F `  Q )  .<_  ( F `
 ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) ) ) )
3618, 35mpbid 222 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) ) )
3710, 5, 15, 33ltrnj 35418 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) ) )  -> 
( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) )  =  ( ( F `  P )  .\/  ( F `  ( ( P  .\/  Q )  ./\  W ) ) ) )
389, 19, 23, 30, 37syl112anc 1330 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) ) )
3910, 4, 14latmle2 17077 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4021, 25, 28, 39syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  .<_  W )
4110, 4, 15, 33ltrnval1 35420 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( P 
.\/  Q )  ./\  W )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  .<_  W ) )  -> 
( F `  (
( P  .\/  Q
)  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  W ) )
429, 19, 30, 40, 41syl112anc 1330 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( ( P  .\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  W )
)
4342oveq2d 6666 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4438, 43eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4536, 44breqtrd 4679 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391
This theorem is referenced by:  cdlemc5  35482
  Copyright terms: Public domain W3C validator