Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29b Structured version   Visualization version   Unicode version

Theorem cdleme29b 35663
Description: Transform cdleme28 35661. (Compare cdleme25b 35642.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b  |-  B  =  ( Base `  K
)
cdleme26.l  |-  .<_  =  ( le `  K )
cdleme26.j  |-  .\/  =  ( join `  K )
cdleme26.m  |-  ./\  =  ( meet `  K )
cdleme26.a  |-  A  =  ( Atoms `  K )
cdleme26.h  |-  H  =  ( LHyp `  K
)
cdleme27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme27.f  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme27.z  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
cdleme27.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
cdleme27.d  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
cdleme27.c  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
Assertion
Ref Expression
cdleme29b  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
v  =  ( C 
.\/  ( X  ./\  W ) ) ) )
Distinct variable groups:    u, s,
z, A    B, s, u, z    u, F    H, s, z    .\/ , s, u, z    K, s, z    .<_ , s, u, z    ./\ , s, u, z    u, N    P, s, u, z    Q, s, u, z    U, s, u, z    W, s, u, z    X, s   
v, A    v, B    v, 
.\/    v,  .<_    v,  ./\    v, P    v, Q    v, U    v, W    v, C    v, s, Z, u    z, v, X
Allowed substitution hints:    C( z, u, s)    D( z, v, u, s)    F( z, v, s)    H( v, u)    K( v, u)    N( z, v, s)    X( u)    Z( z)

Proof of Theorem cdleme29b
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 cdleme26.b . . 3  |-  B  =  ( Base `  K
)
2 cdleme26.l . . 3  |-  .<_  =  ( le `  K )
3 cdleme26.j . . 3  |-  .\/  =  ( join `  K )
4 cdleme26.m . . 3  |-  ./\  =  ( meet `  K )
5 cdleme26.a . . 3  |-  A  =  ( Atoms `  K )
6 cdleme26.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdleme27.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdleme27.f . . 3  |-  F  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdleme27.z . . 3  |-  Z  =  ( ( z  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  z )  ./\  W
) ) )
10 cdleme27.n . . 3  |-  N  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )
11 cdleme27.d . . 3  |-  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N ) )
12 cdleme27.c . . 3  |-  C  =  if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme29ex 35662 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
14 eqid 2622 . . 3  |-  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
15 eqid 2622 . . 3  |-  ( ( P  .\/  Q ) 
./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) )
16 eqid 2622 . . 3  |-  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) )  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) )
17 eqid 2622 . . 3  |-  if ( t  .<_  ( P  .\/  Q ) ,  (
iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  ( ( P 
.\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z ) 
./\  W ) ) ) ) ) ,  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) )  =  if ( t 
.<_  ( P  .\/  Q
) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17cdleme28 35661 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  A. s  e.  A  A. t  e.  A  ( (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( -.  t  .<_  W  /\  ( t 
.\/  ( X  ./\  W ) )  =  X ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( if ( t  .<_  ( P  .\/  Q ) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) 
.\/  ( X  ./\  W ) ) ) )
19 breq1 4656 . . . . . 6  |-  ( s  =  t  ->  (
s  .<_  W  <->  t  .<_  W ) )
2019notbid 308 . . . . 5  |-  ( s  =  t  ->  ( -.  s  .<_  W  <->  -.  t  .<_  W ) )
21 oveq1 6657 . . . . . 6  |-  ( s  =  t  ->  (
s  .\/  ( X  ./\ 
W ) )  =  ( t  .\/  ( X  ./\  W ) ) )
2221eqeq1d 2624 . . . . 5  |-  ( s  =  t  ->  (
( s  .\/  ( X  ./\  W ) )  =  X  <->  ( t  .\/  ( X  ./\  W
) )  =  X ) )
2320, 22anbi12d 747 . . . 4  |-  ( s  =  t  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  <-> 
( -.  t  .<_  W  /\  ( t  .\/  ( X  ./\  W ) )  =  X ) ) )
2412oveq1i 6660 . . . . 5  |-  ( C 
.\/  ( X  ./\  W ) )  =  ( if ( s  .<_  ( P  .\/  Q ) ,  D ,  F
)  .\/  ( X  ./\ 
W ) )
25 breq1 4656 . . . . . . 7  |-  ( s  =  t  ->  (
s  .<_  ( P  .\/  Q )  <->  t  .<_  ( P 
.\/  Q ) ) )
26 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( s  =  t  ->  (
s  .\/  z )  =  ( t  .\/  z ) )
2726oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( s  =  t  ->  (
( s  .\/  z
)  ./\  W )  =  ( ( t 
.\/  z )  ./\  W ) )
2827oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  ( Z  .\/  ( ( s 
.\/  z )  ./\  W ) )  =  ( Z  .\/  ( ( t  .\/  z ) 
./\  W ) ) )
2928oveq2d 6666 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( P  .\/  Q
)  ./\  ( Z  .\/  ( ( s  .\/  z )  ./\  W
) ) )  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) )
3010, 29syl5eq 2668 . . . . . . . . . . . 12  |-  ( s  =  t  ->  N  =  ( ( P 
.\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z ) 
./\  W ) ) ) )
3130eqeq2d 2632 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
u  =  N  <->  u  =  ( ( P  .\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) )
3231imbi2d 330 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N )  <->  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) )
3332ralbidv 2986 . . . . . . . . 9  |-  ( s  =  t  ->  ( A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  N )  <->  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) )
3433riotabidv 6613 . . . . . . . 8  |-  ( s  =  t  ->  ( iota_ u  e.  B  A. z  e.  A  (
( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q ) )  ->  u  =  N ) )  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P  .\/  Q
) )  ->  u  =  ( ( P 
.\/  Q )  ./\  ( Z  .\/  ( ( t  .\/  z ) 
./\  W ) ) ) ) ) )
3511, 34syl5eq 2668 . . . . . . 7  |-  ( s  =  t  ->  D  =  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) )
36 oveq1 6657 . . . . . . . . 9  |-  ( s  =  t  ->  (
s  .\/  U )  =  ( t  .\/  U ) )
37 oveq2 6658 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( P  .\/  s )  =  ( P  .\/  t
) )
3837oveq1d 6665 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( P  .\/  s
)  ./\  W )  =  ( ( P 
.\/  t )  ./\  W ) )
3938oveq2d 6666 . . . . . . . . 9  |-  ( s  =  t  ->  ( Q  .\/  ( ( P 
.\/  s )  ./\  W ) )  =  ( Q  .\/  ( ( P  .\/  t ) 
./\  W ) ) )
4036, 39oveq12d 6668 . . . . . . . 8  |-  ( s  =  t  ->  (
( s  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) )
418, 40syl5eq 2668 . . . . . . 7  |-  ( s  =  t  ->  F  =  ( ( t 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t ) 
./\  W ) ) ) )
4225, 35, 41ifbieq12d 4113 . . . . . 6  |-  ( s  =  t  ->  if ( s  .<_  ( P 
.\/  Q ) ,  D ,  F )  =  if ( t 
.<_  ( P  .\/  Q
) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) )
4342oveq1d 6665 . . . . 5  |-  ( s  =  t  ->  ( if ( s  .<_  ( P 
.\/  Q ) ,  D ,  F ) 
.\/  ( X  ./\  W ) )  =  ( if ( t  .<_  ( P  .\/  Q ) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) 
.\/  ( X  ./\  W ) ) )
4424, 43syl5eq 2668 . . . 4  |-  ( s  =  t  ->  ( C  .\/  ( X  ./\  W ) )  =  ( if ( t  .<_  ( P  .\/  Q ) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) 
.\/  ( X  ./\  W ) ) )
4523, 44reusv3 4876 . . 3  |-  ( E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X  ./\  W ) )  e.  B )  ->  ( A. s  e.  A  A. t  e.  A  ( (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( -.  t  .<_  W  /\  ( t 
.\/  ( X  ./\  W ) )  =  X ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( if ( t  .<_  ( P  .\/  Q ) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) 
.\/  ( X  ./\  W ) ) )  <->  E. v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
v  =  ( C 
.\/  ( X  ./\  W ) ) ) ) )
4645biimpd 219 . 2  |-  ( E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X  ./\  W ) )  e.  B )  ->  ( A. s  e.  A  A. t  e.  A  ( (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( -.  t  .<_  W  /\  ( t 
.\/  ( X  ./\  W ) )  =  X ) )  ->  ( C  .\/  ( X  ./\  W ) )  =  ( if ( t  .<_  ( P  .\/  Q ) ,  ( iota_ u  e.  B  A. z  e.  A  ( ( -.  z  .<_  W  /\  -.  z  .<_  ( P 
.\/  Q ) )  ->  u  =  ( ( P  .\/  Q
)  ./\  ( Z  .\/  ( ( t  .\/  z )  ./\  W
) ) ) ) ) ,  ( ( t  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) ) ) 
.\/  ( X  ./\  W ) ) )  ->  E. v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  v  =  ( C  .\/  ( X 
./\  W ) ) ) ) )
4713, 18, 46sylc 65 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. v  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
v  =  ( C 
.\/  ( X  ./\  W ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   ifcif 4086   class class class wbr 4653   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme29c  35664
  Copyright terms: Public domain W3C validator