Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr29exN Structured version   Visualization version   Unicode version

Theorem cdlemefr29exN 35690
Description: Lemma for cdlemefs29bpre1N 35705. (Compare cdleme25a 35641.) TODO: FIX COMMENT. TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr29.b  |-  B  =  ( Base `  K
)
cdlemefr29.l  |-  .<_  =  ( le `  K )
cdlemefr29.j  |-  .\/  =  ( join `  K )
cdlemefr29.m  |-  ./\  =  ( meet `  K )
cdlemefr29.a  |-  A  =  ( Atoms `  K )
cdlemefr29.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemefr29exN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Distinct variable groups:    A, s    B, s    H, s    K, s    .<_ , s    ./\ , s    P, s    Q, s    W, s    X, s
Allowed substitution hints:    C( s)    .\/ ( s)

Proof of Theorem cdlemefr29exN
StepHypRef Expression
1 simp11 1091 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 1088 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
3 cdlemefr29.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemefr29.l . . . 4  |-  .<_  =  ( le `  K )
5 cdlemefr29.j . . . 4  |-  .\/  =  ( join `  K )
6 cdlemefr29.m . . . 4  |-  ./\  =  ( meet `  K )
7 cdlemefr29.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemefr29.h . . . 4  |-  H  =  ( LHyp `  K
)
93, 4, 5, 6, 7, 8lhpmcvr2 35310 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) )
101, 2, 9syl2anc 693 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  (
s  .\/  ( X  ./\ 
W ) )  =  X ) )
11 nfv 1843 . . . 4  |-  F/ s ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )
12 nfv 1843 . . . 4  |-  F/ s ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )
13 nfra1 2941 . . . 4  |-  F/ s A. s  e.  A  C  e.  B
1411, 12, 13nf3an 1831 . . 3  |-  F/ s ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )
15 simp11l 1172 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  K  e.  HL )
1615adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  HL )
17 hllat 34650 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 17 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  Lat )
19 simpl3 1066 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  A. s  e.  A  C  e.  B )
20 simprl 794 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  s  e.  A )
21 rsp 2929 . . . . . . . . 9  |-  ( A. s  e.  A  C  e.  B  ->  ( s  e.  A  ->  C  e.  B ) )
2219, 20, 21sylc 65 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  C  e.  B )
2315, 17syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  K  e.  Lat )
24 simp2rl 1130 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  X  e.  B )
25 simp11r 1173 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  W  e.  H )
263, 8lhpbase 35284 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  B )
2725, 26syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  W  e.  B )
283, 6latmcl 17052 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
2923, 24, 27, 28syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( X  ./\  W )  e.  B )
3029adantr 481 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( X  ./\ 
W )  e.  B
)
313, 5latjcl 17051 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  C  e.  B  /\  ( X  ./\  W )  e.  B )  -> 
( C  .\/  ( X  ./\  W ) )  e.  B )
3218, 22, 30, 31syl3anc 1326 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( C  .\/  ( X  ./\  W
) )  e.  B
)
3332expr 643 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  ( -.  s  .<_  W  -> 
( C  .\/  ( X  ./\  W ) )  e.  B ) )
3433adantrd 484 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
3534ancld 576 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) ) )
3635ex 450 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  (
s  e.  A  -> 
( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) ) ) )
3714, 36reximdai 3012 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  /\  ( C 
.\/  ( X  ./\  W ) )  e.  B
) ) )
3810, 37mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator