Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12d Structured version   Visualization version   Unicode version

Theorem cdlemg12d 35934
Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg12d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )

Proof of Theorem cdlemg12d
StepHypRef Expression
1 simp11 1091 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12 1092 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simp13 1093 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
4 simp2l 1087 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  F  e.  T )
5 simp2r 1088 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  G  e.  T )
6 simp31 1097 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
7 simp33 1099 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  G
)  .<_  ( P  .\/  Q ) )
8 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
158, 9, 10, 11, 12, 13, 14cdlemg12c 35933 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q
) ) )  .<_  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1349 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( Q  .\/  ( G `  Q
) ) )  .<_  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
178, 9, 10, 11, 12, 13, 14trlval4 35475 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  ( R `  G ) 
.<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( Q  .\/  ( G `  Q ) ) ) )
181, 5, 2, 3, 6, 7, 17syl132anc 1344 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( Q  .\/  ( G `  Q ) ) ) )
198, 11, 12, 13ltrnel 35425 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
201, 5, 2, 19syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
218, 11, 12, 13ltrnel 35425 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
221, 5, 3, 21syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
23 simp12l 1174 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
24 simp13l 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
2511, 12, 13ltrn11at 35433 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q
) )  ->  ( G `  P )  =/=  ( G `  Q
) )
261, 5, 23, 24, 6, 25syl113anc 1338 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( G `  P
)  =/=  ( G `
 Q ) )
27 simp32 1098 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  F
)  .<_  ( P  .\/  Q ) )
28 simp2 1062 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( F  e.  T  /\  G  e.  T
) )
298, 9, 10, 11, 12, 13, 14cdlemg10c 35927 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  F )  .<_  ( ( G `  P ) 
.\/  ( G `  Q ) )  <->  ( R `  F )  .<_  ( P 
.\/  Q ) ) )
301, 2, 3, 28, 29syl121anc 1331 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( R `  F )  .<_  ( ( G `  P ) 
.\/  ( G `  Q ) )  <->  ( R `  F )  .<_  ( P 
.\/  Q ) ) )
3127, 30mtbird 315 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  F
)  .<_  ( ( G `
 P )  .\/  ( G `  Q ) ) )
328, 9, 10, 11, 12, 13, 14trlval4 35475 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P ) 
.<_  W )  /\  (
( G `  Q
)  e.  A  /\  -.  ( G `  Q
)  .<_  W ) )  /\  ( ( G `
 P )  =/=  ( G `  Q
)  /\  -.  ( R `  F )  .<_  ( ( G `  P )  .\/  ( G `  Q )
) ) )  -> 
( R `  F
)  =  ( ( ( G `  P
)  .\/  ( F `  ( G `  P
) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `  Q ) ) ) ) )
331, 4, 20, 22, 26, 31, 32syl132anc 1344 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  F
)  =  ( ( ( G `  P
)  .\/  ( F `  ( G `  P
) ) )  ./\  ( ( G `  Q )  .\/  ( F `  ( G `  Q ) ) ) ) )
3433oveq1d 6665 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( R `  F )  .\/  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) ) )  =  ( ( ( ( G `  P ) 
.\/  ( F `  ( G `  P ) ) )  ./\  (
( G `  Q
)  .\/  ( F `  ( G `  Q
) ) ) ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
3516, 18, 343brtr4d 4685 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemg12e  35935
  Copyright terms: Public domain W3C validator