Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Visualization version   Unicode version

Theorem cdlemj3 36111
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate  g. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemj3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )

Proof of Theorem cdlemj3
Dummy variables  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2622 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2622 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 cdlemj.h . . . 4  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 35296 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u  e.  (
Atoms `  K ) ( u ( le `  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h
) ) )
61, 5syl 17 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  E. u  e.  ( Atoms `  K )
( u ( le
`  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h )
) )
7 simpl1l 1112 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
87adantr 481 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  K  e.  HL )
9 simpl1r 1113 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  W  e.  H )
109adantr 481 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  W  e.  H )
11 simprl 794 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u  e.  ( Atoms `  K ) )
12 simprr1 1109 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u ( le `  K ) W )
13 cdlemj.b . . . . 5  |-  B  =  ( Base `  K
)
14 cdlemj.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemj.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1613, 2, 3, 4, 14, 15cdlemfnid 35852 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  u ( le `  K ) W ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
178, 10, 11, 12, 16syl22anc 1327 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
18 simp1l 1085 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) ) )
19 simp1r 1086 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  h  =/=  (  _I  |`  B ) )
20 simp3l 1089 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  e.  T )
21 simp3rr 1135 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  =/=  (  _I  |`  B ) )
22 simp2r2 1164 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  F
) )
2322necomd 2849 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  u )
24 simp3rl 1134 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =  u )
2523, 24neeqtrrd 2868 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  ( R `  g
) )
26 simp2r3 1165 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  h
) )
2724, 26eqnetrd 2861 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =/=  ( R `  h
) )
28 cdlemj.e . . . . . . . 8  |-  E  =  ( ( TEndo `  K
) `  W )
2913, 4, 14, 15, 28cdlemj2 36110 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )
3018, 19, 20, 21, 25, 27, 29syl132anc 1344 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( U `  h )  =  ( V `  h ) )
31303expia 1267 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( ( g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3231expd 452 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( g  e.  T  ->  ( ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) ) )
3332rexlimdv 3030 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( E. g  e.  T  ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3417, 33mpd 15 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( U `  h
)  =  ( V `
 h ) )
356, 34rexlimddv 3035 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653    _I cid 5023    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  tendocan  36112
  Copyright terms: Public domain W3C validator