Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk26b-3 Structured version   Visualization version   Unicode version

Theorem cdlemk26b-3 36193
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk26b-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j   
j, W    F, d,
e    .<_ , e    f, G, i    x, d, e, f, i, j    x,  .<_    x, A    x, B    x, F    x, G    x, H    x, K    x, N    x, P    x, R    x, T    x, Y    x, W
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( x, f, i)    H( e, f, d)    .\/ ( x)    K( e, f, d)    .<_ ( f, d)    ./\ (
x)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk26b-3
StepHypRef Expression
1 simpl1 1064 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
3 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
4 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5cdlemftr2 35854 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) ) )
71, 6syl 17 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) )
8 simp3r 1090 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
) )
9 simp11 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simp133 1198 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
11 simp131 1196 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
12 simp121 1193 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
13 simp3l 1089 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  x  e.  T )
14 simp123 1195 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
15 simp3r2 1170 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  x )  =/=  ( R `  F
) )
16 simp3r3 1171 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  x )  =/=  ( R `  G
) )
1715, 16jca 554 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  x
)  =/=  ( R `
 F )  /\  ( R `  x )  =/=  ( R `  G ) ) )
18 simp122 1194 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
19 simp132 1197 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
20 simp3r1 1169 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  x  =/=  (  _I  |`  B ) )
2118, 19, 203jca 1242 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )
22 simp2 1062 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
23 cdlemk3.l . . . . . . . 8  |-  .<_  =  ( le `  K )
24 cdlemk3.j . . . . . . . 8  |-  .\/  =  ( join `  K )
25 cdlemk3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
26 cdlemk3.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
27 cdlemk3.s . . . . . . . 8  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T  ( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
28 cdlemk3.u1 . . . . . . . 8  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T  ( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
292, 23, 24, 25, 26, 3, 4, 5, 27, 28cdlemkuel-3 36186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  x  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( x Y G )  e.  T
)
309, 10, 11, 12, 13, 14, 17, 21, 22, 29syl333anc 1358 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
x Y G )  e.  T )
318, 30jca 554 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) )  /\  (
x Y G )  e.  T ) )
32313expia 1267 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) ) )  -> 
( ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) )  /\  ( x Y G )  e.  T
) ) )
3332expd 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  e.  T  ->  ( ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  ->  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) ) ) )
3433reximdvai 3015 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( E. x  e.  T  (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) ) )
357, 34mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemk28-3  36196
  Copyright terms: Public domain W3C validator