MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmnn Structured version   Visualization version   Unicode version

Theorem lmnn 23061
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmnn.2  |-  J  =  ( MetOpen `  D )
lmnn.3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
lmnn.4  |-  ( ph  ->  P  e.  X )
lmnn.5  |-  ( ph  ->  F : NN --> X )
lmnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D P )  < 
( 1  /  k
) )
Assertion
Ref Expression
lmnn  |-  ( ph  ->  F ( ~~> t `  J ) P )
Distinct variable groups:    D, k    k, F    P, k    ph, k    k, X
Allowed substitution hint:    J( k)

Proof of Theorem lmnn
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmnn.4 . 2  |-  ( ph  ->  P  e.  X )
2 rpreccl 11857 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
32adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
43rpred 11872 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR )
53rpge0d 11876 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  ( 1  /  x ) )
6 flge0nn0 12621 . . . . . 6  |-  ( ( ( 1  /  x
)  e.  RR  /\  0  <_  ( 1  /  x ) )  -> 
( |_ `  (
1  /  x ) )  e.  NN0 )
74, 5, 6syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( 1  /  x
) )  e.  NN0 )
8 nn0p1nn 11332 . . . . 5  |-  ( ( |_ `  ( 1  /  x ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  x ) )  +  1 )  e.  NN )
97, 8syl 17 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  ( 1  /  x ) )  +  1 )  e.  NN )
10 lmnn.3 . . . . . . . 8  |-  ( ph  ->  D  e.  ( *Met `  X ) )
1110ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  D  e.  ( *Met `  X
) )
12 lmnn.5 . . . . . . . . 9  |-  ( ph  ->  F : NN --> X )
1312ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  F : NN --> X )
14 eluznn 11758 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( 1  /  x
) )  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x
) )  +  1 ) ) )  -> 
k  e.  NN )
159, 14sylan 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  k  e.  NN )
1613, 15ffvelrnd 6360 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( F `  k )  e.  X
)
171ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  P  e.  X
)
18 xmetcl 22136 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  ( F `  k )  e.  X  /\  P  e.  X
)  ->  ( ( F `  k ) D P )  e.  RR* )
1911, 16, 17, 18syl3anc 1326 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( F `
 k ) D P )  e.  RR* )
2015nnrecred 11066 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  / 
k )  e.  RR )
2120rexrd 10089 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  / 
k )  e.  RR* )
22 rpxr 11840 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e. 
RR* )
2322ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  x  e.  RR* )
24 lmnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D P )  < 
( 1  /  k
) )
2524adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN )  ->  (
( F `  k
) D P )  <  ( 1  / 
k ) )
2615, 25syldan 487 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( F `
 k ) D P )  <  (
1  /  k ) )
274adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  /  x )  e.  RR )
289nnred 11035 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  ( 1  /  x ) )  +  1 )  e.  RR )
2928adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( |_
`  ( 1  /  x ) )  +  1 )  e.  RR )
3015nnred 11035 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  k  e.  RR )
31 flltp1 12601 . . . . . . . . 9  |-  ( ( 1  /  x )  e.  RR  ->  (
1  /  x )  <  ( ( |_
`  ( 1  /  x ) )  +  1 ) )
3227, 31syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  /  x )  <  (
( |_ `  (
1  /  x ) )  +  1 ) )
33 eluzle 11700 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  (
( |_ `  (
1  /  x ) )  +  1 ) )  ->  ( ( |_ `  ( 1  /  x ) )  +  1 )  <_  k
)
3433adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( |_
`  ( 1  /  x ) )  +  1 )  <_  k
)
3527, 29, 30, 32, 34ltletrd 10197 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  /  x )  <  k
)
36 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  x  e.  RR+ )
37 rpregt0 11846 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
38 nnrp 11842 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  RR+ )
3938rpregt0d 11878 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
40 ltrec1 10910 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( k  e.  RR  /\  0  < 
k ) )  -> 
( ( 1  /  x )  <  k  <->  ( 1  /  k )  <  x ) )
4137, 39, 40syl2an 494 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  k  e.  NN )  ->  (
( 1  /  x
)  <  k  <->  ( 1  /  k )  < 
x ) )
4236, 15, 41syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( 1  /  x )  < 
k  <->  ( 1  / 
k )  <  x
) )
4335, 42mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( 1  / 
k )  <  x
)
4419, 21, 23, 26, 43xrlttrd 11990 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )  ->  ( ( F `
 k ) D P )  <  x
)
4544ralrimiva 2966 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) ( ( F `  k
) D P )  <  x )
46 fveq2 6191 . . . . . 6  |-  ( j  =  ( ( |_
`  ( 1  /  x ) )  +  1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) )
4746raleqdv 3144 . . . . 5  |-  ( j  =  ( ( |_
`  ( 1  /  x ) )  +  1 )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) D P )  <  x  <->  A. k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x ) )  +  1 ) ) ( ( F `  k
) D P )  <  x ) )
4847rspcev 3309 . . . 4  |-  ( ( ( ( |_ `  ( 1  /  x
) )  +  1 )  e.  NN  /\  A. k  e.  ( ZZ>= `  ( ( |_ `  ( 1  /  x
) )  +  1 ) ) ( ( F `  k ) D P )  < 
x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D P )  <  x )
499, 45, 48syl2anc 693 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D P )  <  x )
5049ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) D P )  < 
x )
51 lmnn.2 . . 3  |-  J  =  ( MetOpen `  D )
52 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
53 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
54 eqidd 2623 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
5551, 10, 52, 53, 54, 12lmmbrf 23060 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) D P )  <  x ) ) )
561, 50, 55mpbir2and 957 1  |-  ( ph  ->  F ( ~~> t `  J ) P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   RR+crp 11832   |_cfl 12591   *Metcxmt 19731   MetOpencmopn 19736   ~~> tclm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fl 12593  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator