MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpval Structured version   Visualization version   Unicode version

Theorem chpval 24848
Description: Value of the second Chebyshev function, or summary von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpval  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) (Λ `  n
) )
Distinct variable group:    A, n

Proof of Theorem chpval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( x  =  A  ->  ( |_ `  x )  =  ( |_ `  A
) )
21oveq2d 6666 . . 3  |-  ( x  =  A  ->  (
1 ... ( |_ `  x ) )  =  ( 1 ... ( |_ `  A ) ) )
32sumeq1d 14431 . 2  |-  ( x  =  A  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) (Λ `  n )
)
4 df-chp 24825 . 2  |- ψ  =  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n ) )
5 sumex 14418 . 2  |-  sum_ n  e.  ( 1 ... ( |_ `  A ) ) (Λ `  n )  e.  _V
63, 4, 5fvmpt 6282 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) (Λ `  n
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937   ...cfz 12326   |_cfl 12591   sum_csu 14416  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-sum 14417  df-chp 24825
This theorem is referenced by:  efchpcl  24851  chpfl  24876  chpp1  24881  chpwordi  24883  chp1  24893  chtlepsi  24931  chpval2  24943  vmadivsum  25171  selberg  25237  selberg3lem1  25246  selberg4  25250  pntsval2  25265  chpvalz  30706
  Copyright terms: Public domain W3C validator