Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climd Structured version   Visualization version   Unicode version

Theorem climd 39904
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climd.1  |-  F/ k
ph
climd.2  |-  F/_ k F
climd.3  |-  Z  =  ( ZZ>= `  M )
climd.4  |-  ( ph  ->  M  e.  ZZ )
climd.5  |-  ( ph  ->  F  ~~>  A )
climd.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
climd.7  |-  ( ph  ->  X  e.  RR+ )
Assertion
Ref Expression
climd  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  X ) )
Distinct variable groups:    A, j,
k    j, F    j, M    j, X, k    j, Z, k    ph, j
Allowed substitution hints:    ph( k)    B( j, k)    F( k)    M( k)

Proof of Theorem climd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 climd.7 . 2  |-  ( ph  ->  X  e.  RR+ )
2 climd.5 . . . 4  |-  ( ph  ->  F  ~~>  A )
3 climd.1 . . . . 5  |-  F/ k
ph
4 climd.2 . . . . 5  |-  F/_ k F
5 climd.3 . . . . 5  |-  Z  =  ( ZZ>= `  M )
6 climd.4 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
7 climrel 14223 . . . . . . 7  |-  Rel  ~~>
87brrelexi 5158 . . . . . 6  |-  ( F  ~~>  A  ->  F  e.  _V )
92, 8syl 17 . . . . 5  |-  ( ph  ->  F  e.  _V )
10 climd.6 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
113, 4, 5, 6, 9, 10clim2f2 39902 . . . 4  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
122, 11mpbid 222 . . 3  |-  ( ph  ->  ( A  e.  CC  /\ 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
1312simprd 479 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) )
14 breq2 4657 . . . . 5  |-  ( x  =  X  ->  (
( abs `  ( B  -  A )
)  <  x  <->  ( abs `  ( B  -  A
) )  <  X
) )
1514anbi2d 740 . . . 4  |-  ( x  =  X  ->  (
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  X ) ) )
1615rexralbidv 3058 . . 3  |-  ( x  =  X  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  X )
) )
1716rspcva 3307 . 2  |-  ( ( X  e.  RR+  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  X )
)
181, 13, 17syl2anc 693 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  fnlimabslt  39911
  Copyright terms: Public domain W3C validator