Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt Structured version   Visualization version   Unicode version

Theorem climfveqmpt 39903
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveqmpt.k  |-  F/ k
ph
climfveqmpt.m  |-  ( ph  ->  M  e.  ZZ )
climfveqmpt.z  |-  Z  =  ( ZZ>= `  M )
climfveqmpt.A  |-  ( ph  ->  A  e.  R )
climfveqmpt.i  |-  ( ph  ->  Z  C_  A )
climfveqmpt.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  V )
climfveqmpt.t  |-  ( ph  ->  C  e.  S )
climfveqmpt.l  |-  ( ph  ->  Z  C_  C )
climfveqmpt.c  |-  ( (
ph  /\  k  e.  C )  ->  D  e.  W )
climfveqmpt.e  |-  ( (
ph  /\  k  e.  Z )  ->  B  =  D )
Assertion
Ref Expression
climfveqmpt  |-  ( ph  ->  (  ~~>  `  ( k  e.  A  |->  B ) )  =  (  ~~>  `  (
k  e.  C  |->  D ) ) )
Distinct variable groups:    A, k    C, k    k, V    k, W    k, Z
Allowed substitution hints:    ph( k)    B( k)    D( k)    R( k)    S( k)    M( k)

Proof of Theorem climfveqmpt
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climfveqmpt.z . 2  |-  Z  =  ( ZZ>= `  M )
2 climfveqmpt.A . . 3  |-  ( ph  ->  A  e.  R )
32mptexd 6487 . 2  |-  ( ph  ->  ( k  e.  A  |->  B )  e.  _V )
4 climfveqmpt.t . . 3  |-  ( ph  ->  C  e.  S )
54mptexd 6487 . 2  |-  ( ph  ->  ( k  e.  C  |->  D )  e.  _V )
6 climfveqmpt.m . 2  |-  ( ph  ->  M  e.  ZZ )
7 climfveqmpt.k . . . . . 6  |-  F/ k
ph
8 nfv 1843 . . . . . 6  |-  F/ k  j  e.  Z
97, 8nfan 1828 . . . . 5  |-  F/ k ( ph  /\  j  e.  Z )
10 nfcv 2764 . . . . . . 7  |-  F/_ k
j
1110nfcsb1 3548 . . . . . 6  |-  F/_ k [_ j  /  k ]_ B
1210nfcsb1 3548 . . . . . 6  |-  F/_ k [_ j  /  k ]_ D
1311, 12nfeq 2776 . . . . 5  |-  F/ k
[_ j  /  k ]_ B  =  [_ j  /  k ]_ D
149, 13nfim 1825 . . . 4  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  [_ j  /  k ]_ B  =  [_ j  /  k ]_ D
)
15 eleq1 2689 . . . . . 6  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
1615anbi2d 740 . . . . 5  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
17 csbeq1a 3542 . . . . . 6  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
18 csbeq1a 3542 . . . . . 6  |-  ( k  =  j  ->  D  =  [_ j  /  k ]_ D )
1917, 18eqeq12d 2637 . . . . 5  |-  ( k  =  j  ->  ( B  =  D  <->  [_ j  / 
k ]_ B  =  [_ j  /  k ]_ D
) )
2016, 19imbi12d 334 . . . 4  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  B  =  D )  <-> 
( ( ph  /\  j  e.  Z )  ->  [_ j  /  k ]_ B  =  [_ j  /  k ]_ D
) ) )
21 climfveqmpt.e . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  =  D )
2214, 20, 21chvar 2262 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  [_ j  /  k ]_ B  =  [_ j  /  k ]_ D )
23 climfveqmpt.i . . . . . 6  |-  ( ph  ->  Z  C_  A )
2423adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  Z  C_  A )
25 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
2624, 25sseldd 3604 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  A )
27 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  A )
28 nfv 1843 . . . . . . . 8  |-  F/ k  j  e.  A
297, 28nfan 1828 . . . . . . 7  |-  F/ k ( ph  /\  j  e.  A )
30 nfcv 2764 . . . . . . . 8  |-  F/_ k V
3111, 30nfel 2777 . . . . . . 7  |-  F/ k
[_ j  /  k ]_ B  e.  V
3229, 31nfim 1825 . . . . . 6  |-  F/ k ( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  V
)
33 eleq1 2689 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
3433anbi2d 740 . . . . . . 7  |-  ( k  =  j  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  j  e.  A ) ) )
3517eleq1d 2686 . . . . . . 7  |-  ( k  =  j  ->  ( B  e.  V  <->  [_ j  / 
k ]_ B  e.  V
) )
3634, 35imbi12d 334 . . . . . 6  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  A )  ->  B  e.  V )  <-> 
( ( ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  V
) ) )
37 climfveqmpt.b . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  V )
3832, 36, 37chvar 2262 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  V )
39 eqid 2622 . . . . . 6  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
4010, 11, 17, 39fvmptf 6301 . . . . 5  |-  ( ( j  e.  A  /\  [_ j  /  k ]_ B  e.  V )  ->  ( ( k  e.  A  |->  B ) `  j )  =  [_ j  /  k ]_ B
)
4127, 38, 40syl2anc 693 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  (
( k  e.  A  |->  B ) `  j
)  =  [_ j  /  k ]_ B
)
4226, 41syldan 487 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (
( k  e.  A  |->  B ) `  j
)  =  [_ j  /  k ]_ B
)
43 climfveqmpt.l . . . . . 6  |-  ( ph  ->  Z  C_  C )
4443adantr 481 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  Z  C_  C )
4544, 25sseldd 3604 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  C )
46 simpr 477 . . . . 5  |-  ( (
ph  /\  j  e.  C )  ->  j  e.  C )
47 nfv 1843 . . . . . . . 8  |-  F/ k  j  e.  C
487, 47nfan 1828 . . . . . . 7  |-  F/ k ( ph  /\  j  e.  C )
49 nfcv 2764 . . . . . . . 8  |-  F/_ k W
5012, 49nfel 2777 . . . . . . 7  |-  F/ k
[_ j  /  k ]_ D  e.  W
5148, 50nfim 1825 . . . . . 6  |-  F/ k ( ( ph  /\  j  e.  C )  ->  [_ j  /  k ]_ D  e.  W
)
52 eleq1 2689 . . . . . . . 8  |-  ( k  =  j  ->  (
k  e.  C  <->  j  e.  C ) )
5352anbi2d 740 . . . . . . 7  |-  ( k  =  j  ->  (
( ph  /\  k  e.  C )  <->  ( ph  /\  j  e.  C ) ) )
5418eleq1d 2686 . . . . . . 7  |-  ( k  =  j  ->  ( D  e.  W  <->  [_ j  / 
k ]_ D  e.  W
) )
5553, 54imbi12d 334 . . . . . 6  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  C )  ->  D  e.  W )  <-> 
( ( ph  /\  j  e.  C )  ->  [_ j  /  k ]_ D  e.  W
) ) )
56 climfveqmpt.c . . . . . 6  |-  ( (
ph  /\  k  e.  C )  ->  D  e.  W )
5751, 55, 56chvar 2262 . . . . 5  |-  ( (
ph  /\  j  e.  C )  ->  [_ j  /  k ]_ D  e.  W )
58 eqid 2622 . . . . . 6  |-  ( k  e.  C  |->  D )  =  ( k  e.  C  |->  D )
5910, 12, 18, 58fvmptf 6301 . . . . 5  |-  ( ( j  e.  C  /\  [_ j  /  k ]_ D  e.  W )  ->  ( ( k  e.  C  |->  D ) `  j )  =  [_ j  /  k ]_ D
)
6046, 57, 59syl2anc 693 . . . 4  |-  ( (
ph  /\  j  e.  C )  ->  (
( k  e.  C  |->  D ) `  j
)  =  [_ j  /  k ]_ D
)
6145, 60syldan 487 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (
( k  e.  C  |->  D ) `  j
)  =  [_ j  /  k ]_ D
)
6222, 42, 613eqtr4d 2666 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (
( k  e.  A  |->  B ) `  j
)  =  ( ( k  e.  C  |->  D ) `  j ) )
631, 3, 5, 6, 62climfveq 39901 1  |-  ( ph  ->  (  ~~>  `  ( k  e.  A  |->  B ) )  =  (  ~~>  `  (
k  e.  C  |->  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   _Vcvv 3200   [_csb 3533    C_ wss 3574    |-> cmpt 4729   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  fnlimfvre  39906
  Copyright terms: Public domain W3C validator